983 resultados para Probabilistic analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comunicación presentada en el VII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, SNRFAI, Barcelona, abril 1997.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

beta2-Laminin is important for the formation of neuromuscular junctions in vertebrates. Previously, we have inactivated the gene that encodes for beta2-laminin in mice and observed predominantly prejunctional structural defects. In this study, we have used both intra- and extracellular recording methods to investigate evoked neurotransmission in beta2-laminin-deficient mice, from postnatal day 8 (P8) through to day 18(P18). Our results confirmed that there was a decrease in the frequency of spontaneous release, but no change in the postjunctional response to such release. Analysis of evoked neurotransmission showed an increase in the frequency of stimuli that failed to elicit an evoked postjunctional response in the mutants compared to litter mate controls, resulting in a 50% reduction in mean quantal content at mutant terminals. Compared to littermate controls, beta2-laminin-deficient terminals showed greater synaptic depression when subjected to high frequency stimulation. Furthermore, the paired pulse ratio of the first two stimuli was significantly lower in beta2-laminin mutant terminals. Statistical analysis of the binomial parameters of release showed that the decrease in quantal content was due to a decrease in the number of release sites without any significant change in the average probability of release. This suggestion was supported by the observation of fewer synaptic vesicle protein 2 (SV2)-positive varicosities in beta2-laminin-deficient terminals and by ultrastructural observations showing smaller terminal profiles and increased Schwann cell invasion in beta2-laminin mutants; the differences between beta2-laminin mutants and wild-type mice were the same at both P8 and P18. From these results we conclude that beta2-laminin plays a role in the early structural development of the neuromuscular junction. We also suggest that transmitter release activity may act as a deterrent to Schwarm cell invasion in the absence of beta2-laminin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Lescol Intervention Prevention Study (LIPS) was a multinational randomized controlled trial that showed a 47% reduction in the relative risk of cardiac death and a 22% reduction in major adverse cardiac events (MACEs) from the routine use of fluvastatin, compared with controls, in patients undergoing percutaneous coronary intervention (PCI, defined as angioplasty with or without stents). In this study, MACEs included cardiac death, nonfatal myocardial infarction, and subsequent PCI and coronary artery bypass graft. Diabetes was the greatest risk factor for MACEs. Objective: This study estimated the cost-effectiveness of fluvastatin when used for secondary prevention of MACEs after PCI in people with diabetes. Methods: A post hoc subgroup analysis of patients with diabetes from the LIPS was used to estimate the effectiveness of fluvastatin in reducing myocardial infarction, revascularization, and cardiac death. A probabilistic Markov model was developed using United Kingdom resource and cost data to estimate the additional costs and quality-adjusted life-years (QALYs) gained over 10 years from the perspective of the British National Health Service. The model contained 6 health states, and the transition probabilities were derived from the LIPS data. Crossover from fluvastatin to other lipid-lowering drugs, withdrawal from fluvastatin, and the use of lipid-lowering drugs in the control group were included. Results: In the subgroup of 202 patients with diabetes in the LIPS trial, 18 (15.0%) of 120 fluvastatin patients and 21 (25.6%) of 82 control participants were insulin dependent (P = NS). Compared with the control group, patients treated with fluvastatin can expect to gain an additional mean (SD) of 0.196 (0.139) QALY per patient over 10 years (P < 0.001) and will cost the health service an additional mean (SD) of 10 (E448) (P = NS) (mean [SD] US $16 [$689]). The additional cost per QALY gained was;(51 (US $78). The key determinants of cost-effectiveness included the probabilities of repeat interventions, cardiac death, the cost of fluvastatin, and the time horizon used for the evaluation. Conclusion: Fluvastatin was an economically efficient treatment to prevent MACEs in these patients with diabetes undergoing PCI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new method for producing a functional-structural plant model that simulates response to different growth conditions, yet does not require detailed knowledge of underlying physiology. The example used to present this method is the modelling of the mountain birch tree. This new functional-structural modelling approach is based on linking an L-system representation of the dynamic structure of the plant with a canonical mathematical model of plant function. Growth indicated by the canonical model is allocated to the structural model according to probabilistic growth rules, such as rules for the placement and length of new shoots, which were derived from an analysis of architectural data. The main advantage of the approach is that it is relatively simple compared to the prevalent process-based functional-structural plant models and does not require a detailed understanding of underlying physiological processes, yet it is able to capture important aspects of plant function and adaptability, unlike simple empirical models. This approach, combining canonical modelling, architectural analysis and L-systems, thus fills the important role of providing an intermediate level of abstraction between the two extremes of deeply mechanistic process-based modelling and purely empirical modelling. We also investigated the relative importance of various aspects of this integrated modelling approach by analysing the sensitivity of the standard birch model to a number of variations in its parameters, functions and algorithms. The results show that using light as the sole factor determining the structural location of new growth gives satisfactory results. Including the influence of additional regulating factors made little difference to global characteristics of the emergent architecture. Changing the form of the probability functions and using alternative methods for choosing the sites of new growth also had little effect. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For second-hand products sold with warranty, the expected warranty cost for an item to the manufacturer, depends on (i) the age and/or usage as well as the maintenance history for the item and (ii) the terms of the warranty policy. The paper develops probabilistic models to compute the expected warranty cost to the manufacturer when the items are sold with free replacement or pro rata warranties. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been an increased demand for characterizing user access patterns using web mining techniques since the informative knowledge extracted from web server log files can not only offer benefits for web site structure improvement but also for better understanding of user navigational behavior. In this paper, we present a web usage mining method, which utilize web user usage and page linkage information to capture user access pattern based on Probabilistic Latent Semantic Analysis (PLSA) model. A specific probabilistic model analysis algorithm, EM algorithm, is applied to the integrated usage data to infer the latent semantic factors as well as generate user session clusters for revealing user access patterns. Experiments have been conducted on real world data set to validate the effectiveness of the proposed approach. The results have shown that the presented method is capable of characterizing the latent semantic factors and generating user profile in terms of weighted page vectors, which may reflect the common access interest exhibited by users among same session cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grid computing is an emerging technology for providing the high performance computing capability and collaboration mechanism for solving the collaborated and complex problems while using the existing resources. In this paper, a grid computing based framework is proposed for the probabilistic based power system reliability and security analysis. The suggested name of this computing grid is Reliability and Security Grid (RSA-Grid). Then the architecture of this grid is presented. A prototype system has been built for further development of grid-based services for power systems reliability and security assessment based on probabilistic techniques, which require high performance computing and large amount of memory. Preliminary results based on prototype of this grid show that RSA-Grid can provide the comprehensive assessment results for real power systems efficiently and economically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probabilistic robotics most often applied to the problem of simultaneous localisation and mapping (SLAM), requires measures of uncertainty to accompany observations of the environment. This paper describes how uncertainty can be characterised for a vision system that locates coloured landmarks in a typical laboratory environment. The paper describes a model of the uncertainty in segmentation, the internal cameral model and the mounting of the camera on the robot. It explains the implementation of the system on a laboratory robot, and provides experimental results that show the coherence of the uncertainty model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Previous attempts to formulate mixture models for PCA have therefore to some extent been ad hoc. In this paper, PCA is formulated within a maximum-likelihood framework, based on a specific form of Gaussian latent variable model. This leads to a well-defined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context of clustering, density modelling and local dimensionality reduction, and we demonstrate its application to image compression and handwritten digit recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exploratory analysis of data seeks to find common patterns to gain insights into the structure and distribution of the data. In geochemistry it is a valuable means to gain insights into the complicated processes making up a petroleum system. Typically linear visualisation methods like principal components analysis, linked plots, or brushing are used. These methods can not directly be employed when dealing with missing data and they struggle to capture global non-linear structures in the data, however they can do so locally. This thesis discusses a complementary approach based on a non-linear probabilistic model. The generative topographic mapping (GTM) enables the visualisation of the effects of very many variables on a single plot, which is able to incorporate more structure than a two dimensional principal components plot. The model can deal with uncertainty, missing data and allows for the exploration of the non-linear structure in the data. In this thesis a novel approach to initialise the GTM with arbitrary projections is developed. This makes it possible to combine GTM with algorithms like Isomap and fit complex non-linear structure like the Swiss-roll. Another novel extension is the incorporation of prior knowledge about the structure of the covariance matrix. This extension greatly enhances the modelling capabilities of the algorithm resulting in better fit to the data and better imputation capabilities for missing data. Additionally an extensive benchmark study of the missing data imputation capabilities of GTM is performed. Further a novel approach, based on missing data, will be introduced to benchmark the fit of probabilistic visualisation algorithms on unlabelled data. Finally the work is complemented by evaluating the algorithms on real-life datasets from geochemical projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.