940 resultados para Premixed Flame Ball


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outwardly-propagating spherical turbulent premixed flames are studied using Reynolds-Averaged Navier-Stokes methodology. The reaction rate closure is based on recently developed strained flamelets, where the flamelets are parametrised using the scalar dissipation rate. It is shown that the leading edge speed for the spherical flame is higher than for the planar case, for a given turbulence and thermo-chemical conditions. In addition, it is shown that including the mean curvature effects in the reaction rate closure do not influence the spherical flame speeds when compared with a model that excludes these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of the scalar dissipation rate transport in the corrugated flamelets and the thin reaction zones regimes are studied based on two three-dimensional Direct Numerical Simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. The turbulent flame parameters are so chosen that the database which represents the corrugated flamelets regime has a global Damköhler number Da>1 whereas the database representing the thin reaction zones regime has Da <1. It is demonstrated that the terms originating from the correlation between fluctuating velocity and scalar gradient T1 shows strong Da dependence. The terms originating from dilatation T2, the scalar inner product of gradients of velocity and scalar fields T3 and the correlation between reaction rate and scalar gradients T4 and the dissipation term D2 remain important for both the flames. However, T3 dissipates scalar dissipation rate in the Da > 1 flame while it produces scalar dissipation rate in the Da < 1 flame. This difference is because of the change in the alignment between scalar and velocity gradients

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. Time-averaged and phase-synchronized CH* chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (φg=0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u'/U∼0.45 and f=60, 160Hz). Outer stream enrichment tends to improve the flame's stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures. © 2011 The Combustion Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulent combustion of stoichiometric hydrogen-air mixture is simulated using direct numerical simulation methodology, employing complex chemical kinetics. Two flame configurations, freely propagating and V-flames stabilized behind a hot rod, are simulated. The results are analyzed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation processes. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to align with the most extensive strain in the region of intense heat release. The combustion in the rod stabilized flame is found to be flamelet like in an average sense and the growth of flame-brush thickness with the downstream distance is represented well by Taylor theory of turbulent diffusion, when the flame-brushes are non-interacting. The thickness is observed to saturate when the flame-brushes interact, which is found to occur in the simulated rod stabilized flame with Taylor micro-scale Reynolds number of 97. © 2011 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the interactions that occur between two lean turbulent premixed flames stabilised on conical bluff-bodies when they are moved closer together. Cinematographic OH-PLIF measurements were acquired to investigate adjacent flame front interactions as a function of flame separation distance (S). Flame surface density (FSD) and curvature were determined to characterise the unforced flames. Acoustic forcing was then applied to explore the amplitude dependent thermo-acoustic response. Phase-averaged FSD and global heat release measurements in the form of OH * chemiluminescence were obtained for a range of forcing frequencies (f) and amplitudes (A) as a function of S. As the flames were brought closer together the adjacent annular jets were found to merge into a single jet structure. This caused adjacent flame fronts to merge above the wake region between the two flames at a location determined by the jet efflux (flame angle) and S. This region of flame-flame interaction we refer to as 'interacting region'. In the unforced flames, a trend of increasingly negative curvature for decreasing S produced a small net increase in flame surface area via cusp formation. When subjected to acoustic forcing, S-dependent regimes were found in the global heat release response as a function A. The overall trend showed that the occurrence of jet/flame merging reduces the value of A at which non-linear response occurs. In support of previous findings for flames stabilised along shear layers, the phase-averaged FSD showed that the flame dynamics that drive the thermo-acoustic response result from the roll-up of vortices which generate large-scale vortex-flame interactions. Compared with axisymmetric flames, the occurrence of jet merging alters the vortex-flame interactions resulting in an asymmetric contribution to the heat release between the wall and interacting regions. The majority of the heat release was found to occur in the interacting region through the rapid production and destruction of flame surface area. The occurrence of jet merging and large-scale interactions between adjacent flames result in different physical mechanisms that drive the thermo-acoustic response compared with single axisymmetric flames. © 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-point spatial correlation of the rate of change of fluctuating heat release rate is central to the sound emission from open turbulent flames, and a few attempts have been made to address this correlation in recent studies. In this paper, the two-point correlation and its role in combustion noise are studied by analysing direct numerical simulation (DNS) data of statistically multi-dimensional turbulent premixed flames. The results suggest that this correlation function depends on the separation distance and direction but, not on the positions inside the flame brush. This correlation can be modelled using a combination of Hermite-Gaussian functions of zero and second order, i.e. functions of the form (1-Ax2)e-Bx2 for constants A and B, to include its possible negative values. The integral correlation volume obtained using this model is about 0.2δL3 with the length scale obtained from its cube root being about 0.6δ L, where δ L is the laminar flame thermal thickness. Both of the values are slightly larger than the values reported in an earlier study because of the anisotropy observed for the correlation. This model together with the turbulence-dependent parameter K, the ratio of the root-mean-square (RMS) value of the rate of change of reaction rate to the mean reaction rate, derived from the DNS data is applied to predict the far-field sound emitted from open flames. The calculated noise levels agree well with recently reported measurements and show a sensitivity to K values. © 2012 The Combustion Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed experimental investigations of the amplitude dependence of flame describing functions (FDF) were performed using a stratified swirl-stabilized combustor, in order to understand the combustion-acoustic interactions of CH4/air flames propagating into nonhomogeneous reactant stoichiometry. Phase-synchronized OH planar laser induced fluorescence (OH PLIF) measurements were used to investigate local reaction zone structures of forced flames. To determine the amplitude-and frequency-dependent forced flame response, simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. The measurements were made over a wide range of stratification ratios, including inner stream enrichment ( θ o>θ i) and outer stream enrichment ( θ o>θ i)) conditions, and compared to the baseline condition of spatially and temporally homogeneous cases ( θ o=θ i)). Results show that for the inlet conditions investigated, fuel stratification has a significant influence on local and global flame structures of unforced and forced flames. Under stratified conditions, length scales of local contours were found to be much larger than the homogeneous case due to high kinematic viscosities associated with high temperature. Stratification has a remarkable effect on flame-vortex interactions when the flame is subjected to high-amplitude acoustic forcing, leading to different evolution patterns of FDF (amplitude and disturbance convective time) in response to the amplitude of the imposed inlet velocity oscillation. The present experimental investigation reveals that intentional stratification has the potential to eliminate or suppress the occurrence of detrimental combustion instability problems in lean-premixed gas turbine combustion systems. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane-air flames (Le=0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H 2 and H 2O through the preheat zone ahead of CO 2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO 2 is accumulated. © 2011 The Combustion Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of flames in a turbulent methane/air stratified swirl burner is presented. The degree of stratification and swirl are systematically varied to generate a matrix of experimental conditions, allowing their separate and combined effects to be investigated. Non-swirling flows are considered in the present paper, and the effects of swirl are considered in a companion paper (Part II). A mean equivalence ratio of φ=0.75 is used, with φ for the highest level of stratification spanning 0.375-1.125. The burner features a central bluff-body to aid flame stabilization, and the influence of the induced recirculation zone is also considered. The current work focuses on non-swirling flows where two-component particle image velocimetry (PIV) measurements are sufficient to characterize the main features of the flow field. Scalar data obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution allow the behavior of key combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. Simultaneous cross-planar OH-PLIF is used to determine the orientation of the instantaneous flame normal in the scalar measurement window, allowing gradients in temperature and progress variable to be angle corrected to their three dimensional values. The relationship between curvature and flame thickness is investigated using the OH-PLIF images, as well as the effect of stratification on curvature.The main findings are that the behavior of the key combustion species in temperature space is well captured on the mean by laminar flame calculations regardless of the level of stratification. H 2 and CO are significant exceptions, both appearing at elevated levels in the stratified flames. Values for surface density function and by extension thermal scalar dissipation rate are found to be substantially lower than laminar values, as the thickening of the flame due to turbulence dominates the effect of increased strain. These findings hold for both premixed and stratified flames. The current series of flames is proposed as an interesting if challenging set of test cases for existing and emerging turbulent flame models, and data are available on request. © 2012 The Combustion Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of algebraic flame surface density (FSD) models has been assessed for flames with nonunity Lewis number (Le) in the thin reaction zones regime, using a direct numerical simulation (DNS) database of freely propagating turbulent premixed flames with Le ranging from 0.34 to 1.2. The focus is on algebraic FSD models based on a power-law approach, and the effects of Lewis number on the fractal dimension D and inner cut-off scale η i have been studied in detail. It has been found that D is strongly affected by Lewis number and increases significantly with decreasing Le. By contrast, η i remains close to the laminar flame thermal thickness for all values of Le considered here. A parameterisation of D is proposed such that the effects of Lewis number are explicitly accounted for. The new parameterisation is used to propose a new algebraic model for FSD. The performance of the new model is assessed with respect to results for the generalised FSD obtained from explicitly LES-filtered DNS data. It has been found that the performance of the most existing models deteriorates with decreasing Lewis number, while the newly proposed model is found to perform as well or better than the most existing algebraic models for FSD. © 2012 Mohit Katragadda et al.