938 resultados para Predictive model
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether (DME) gas adsorptive separation and steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). Hydrogen is currently receiving increasing interest as an alternative source of clean energy and has high potential applications, including the transportation sector and power generation. Computational fluid dynamic (CFD) modelling has attracted considerable recognition in the engineering sector consequently leading to using it as a tool for process design and optimisation in many industrial processes. In most cases, these processes are difficult or expensive to conduct in lab scale experiments. The CFD provides a cost effective methodology to gain detailed information up to the microscopic level. The main objectives in this project are to: (i) develop a predictive model using ANSYS FLUENT (CFD) commercial code to simulate the flow hydrodynamics, mass transfer, reactions and heat transfer in a large scale dual fluidized bed system for combined gas separation and steam reforming processes (ii) implement a suitable adsorption models in the CFD code, through a user defined function, to predict selective separation of a gas from a mixture (iii) develop a model for dimethyl ether steam reforming (DME-SR) to predict hydrogen production (iv) carry out detailed parametric analysis in order to establish ideal operating conditions for future industrial application. The project has originated from a real industrial case problem in collaboration with the industrial partner Dow Corning (UK) and jointly funded by the Engineering and Physical Research Council (UK) and Dow Corning. The research examined gas separation by adsorption in a bubbling bed, as part of a dual fluidized bed system. The adsorption process was simulated based on the kinetics derived from the experimental data produced as part of a separate PhD project completed under the same fund. The kinetic model was incorporated in FLUENT CFD tool as a pseudo-first order rate equation; some of the parameters for the pseudo-first order kinetics were obtained using MATLAB. The modelling of the DME adsorption in the designed bubbling bed was performed for the first time in this project and highlights the novelty in the investigations. The simulation results were analysed to provide understanding of the flow hydrodynamic, reactor design and optimum operating condition for efficient separation. Bubbling bed validation by estimation of bed expansion and the solid and gas distribution from simulation agreed well with trends seen in the literatures. Parametric analysis on the adsorption process demonstrated that increasing fluidizing velocity reduced adsorption of DME. This is as a result of reduction in the gas residence time which appears to have much effect compared to the solid residence time. The removal efficiency of DME from the bed was found to be more than 88%. Simulation of the DME-SR in FLUENT CFD was conducted using selected kinetics from literature and implemented in the model using an in-house developed user defined function. The validation of the kinetics was achieved by simulating a case to replicate an experimental study of a laboratory scale bubbling bed by Vicente et al [1]. Good agreement was achieved for the validation of the models, which was then applied in the DME-SR in the large scale riser section of the dual fluidized bed system. This is the first study to use the selected DME-SR kinetics in a circulating fluidized bed (CFB) system and for the geometry size proposed for the project. As a result, the simulation produced the first detailed data on the spatial variation and final gas product in such an industrial scale fluidized bed system. The simulation results provided insight in the flow hydrodynamic, reactor design and optimum operating condition. The solid and gas distribution in the CFB was observed to show good agreement with literatures. The parametric analysis showed that the increase in temperature and steam to DME molar ratio increased the production of hydrogen due to the increased DME conversions, whereas the increase in the space velocity has been found to have an adverse effect. Increasing temperature between 200 oC to 350 oC increased DME conversion from 47% to 99% while hydrogen yield increased substantially from 11% to 100%. The CO2 selectivity decreased from 100% to 91% due to the water gas shift reaction favouring CO at higher temperatures. The higher conversions observed as the temperature increased was reflected on the quantity of unreacted DME and methanol concentrations in the product gas, where both decreased to very low values of 0.27 mol% and 0.46 mol% respectively at 350 °C. Increasing the steam to DME molar ratio from 4 to 7.68 increased the DME conversion from 69% to 87%, while the hydrogen yield increased from 40% to 59%. The CO2 selectivity decreased from 100% to 97%. The decrease in the space velocity from 37104 ml/g/h to 15394 ml/g/h increased the DME conversion from 87% to 100% while increasing the hydrogen yield from 59% to 87%. The parametric analysis suggests an operating condition for maximum hydrogen yield is in the region of 300 oC temperatures and Steam/DME molar ratio of 5. The analysis of the industrial sponsor’s case for the given flow and composition of the gas to be treated suggests that 88% of DME can be adsorbed from the bubbling and consequently producing 224.4t/y of hydrogen in the riser section of the dual fluidized bed system. The process also produces 1458.4t/y of CO2 and 127.9t/y of CO as part of the product gas. The developed models and parametric analysis carried out in this study provided essential guideline for future design of DME-SR at industrial level and in particular this work has been of tremendous importance for the industrial collaborator in order to draw conclusions and plan for future potential implementation of the process at an industrial scale.
Resumo:
The aim of this research is to consider the possible effect of an emerging technology platform on the uptake of online shopping: interactive (digital) Television (iTV), which enables viewers to select a variety of viewing options, publicity materials, games, entertainment and more recently shopping. An augmented version of the original TAM is applied to this study. Two new constructs are considered namely access and awareness together with perceived ease of use, perceived usefulness, perceived enjoyment and security. The results show that indeed the augmented TAM can be used as a predictive model for the adoption of iTV as an online shopping platform. It is concluded that access, perceived ease of use, perceived enjoyment and perceived usefulness are significant factors to determine the consumers’behavioural intentions towards the use of digital TV as a new shopping platform. However, awareness and security are considered to be insignificant with no effect on consumers’ behavioural intentions towards the new shopping medium.
Resumo:
Computational Fluid Dynamics (CFD) has found great acceptance among the engineering community as a tool for research and design of processes that are practically difficult or expensive to study experimentally. One of these processes is the biomass gasification in a Circulating Fluidized Bed (CFB). Biomass gasification is the thermo-chemical conversion of biomass at a high temperature and a controlled oxygen amount into fuel gas, also sometime referred to as syngas. Circulating fluidized bed is a type of reactor in which it is possible to maintain a stable and continuous circulation of solids in a gas-solid system. The main objectives of this thesis are four folds: (i) Develop a three-dimensional predictive model of biomass gasification in a CFB riser using advanced Computational Fluid Dynamic (CFD) (ii) Experimentally validate the developed hydrodynamic model using conventional and advanced measuring techniques (iii) Study the complex hydrodynamics, heat transfer and reaction kinetics through modelling and simulation (iv) Study the CFB gasifier performance through parametric analysis and identify the optimum operating condition to maximize the product gas quality. Two different and complimentary experimental techniques were used to validate the hydrodynamic model, namely pressure measurement and particle tracking. The pressure measurement is a very common and widely used technique in fluidized bed studies, while, particle tracking using PEPT, which was originally developed for medical imaging, is a relatively new technique in the engineering field. It is relatively expensive and only available at few research centres around the world. This study started with a simple poly-dispersed single solid phase then moved to binary solid phases. The single solid phase was used for primary validations and eliminating unnecessary options and steps in building the hydrodynamic model. Then the outcomes from the primary validations were applied to the secondary validations of the binary mixture to avoid time consuming computations. Studies on binary solid mixture hydrodynamics is rarely reported in the literature. In this study the binary solid mixture was modelled and validated using experimental data from the both techniques mentioned above. Good agreement was achieved with the both techniques. According to the general gasification steps the developed model has been separated into three main gasification stages; drying, devolatilization and tar cracking, and partial combustion and gasification. The drying was modelled as a mass transfer from the solid phase to the gas phase. The devolatilization and tar cracking model consist of two steps; the devolatilization of the biomass which is used as a single reaction to generate the biomass gases from the volatile materials and tar cracking. The latter is also modelled as one reaction to generate gases with fixed mass fractions. The first reaction was classified as a heterogeneous reaction while the second reaction was classified as homogenous reaction. The partial combustion and gasification model consisted of carbon combustion reactions and carbon and gas phase reactions. The partial combustion considered was for C, CO, H2 and CH4. The carbon gasification reactions used in this study is the Boudouard reaction with CO2, the reaction with H2O and Methanation (Methane forming reaction) reaction to generate methane. The other gas phase reactions considered in this study are the water gas shift reaction, which is modelled as a reversible reaction and the methane steam reforming reaction. The developed gasification model was validated using different experimental data from the literature and for a wide range of operating conditions. Good agreement was observed, thus confirming the capability of the model in predicting biomass gasification in a CFB to a great accuracy. The developed model has been successfully used to carry out sensitivity and parametric analysis. The sensitivity analysis included: study of the effect of inclusion of various combustion reaction; and the effect of radiation in the gasification reaction. The developed model was also used to carry out parametric analysis by changing the following gasifier operating conditions: fuel/air ratio; biomass flow rates; sand (heat carrier) temperatures; sand flow rates; sand and biomass particle sizes; gasifying agent (pure air or pure steam); pyrolysis models used; steam/biomass ratio. Finally, based on these parametric and sensitivity analysis a final model was recommended for the simulation of biomass gasification in a CFB riser.
Resumo:
Despite concerns about the relevance of management education, there is relatively little evidence about whether graduates use the management tools and concepts they are taught. We address this gap with evidence from a survey of business school alumni adoption of tools typically taught in strategic management courses. Our findings show that four educational characteristics-level of formal education, frequency of management training, specificity of strategic management education, and time elapsed since formal education-drive adoption of strategy tools. Specifically, features such as postgraduate over undergraduate qualifications and frequent exposure to management training predispose greater user of strategy tools. However, other factors, such as time elapsed since formal education, are not as great a predictor of variation in use. We conclude with a predictive model of the relative weight and importance of educational and demographic characteristics on strategy tool adoption and discuss our findings in light of the relevance debate. © The Author(s) 2013.
Resumo:
Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.
Resumo:
Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^
Resumo:
Security remains a top priority for organizations as their information systems continue to be plagued by security breaches. This dissertation developed a unique approach to assess the security risks associated with information systems based on dynamic neural network architecture. The risks that are considered encompass the production computing environment and the client machine environment. The risks are established as metrics that define how susceptible each of the computing environments is to security breaches. ^ The merit of the approach developed in this dissertation is based on the design and implementation of Artificial Neural Networks to assess the risks in the computing and client machine environments. The datasets that were utilized in the implementation and validation of the model were obtained from business organizations using a web survey tool hosted by Microsoft. This site was designed as a host site for anonymous surveys that were devised specifically as part of this dissertation. Microsoft customers can login to the website and submit their responses to the questionnaire. ^ This work asserted that security in information systems is not dependent exclusively on technology but rather on the triumvirate people, process and technology. The questionnaire and consequently the developed neural network architecture accounted for all three key factors that impact information systems security. ^ As part of the study, a methodology on how to develop, train and validate such a predictive model was devised and successfully deployed. This methodology prescribed how to determine the optimal topology, activation function, and associated parameters for this security based scenario. The assessment of the effects of security breaches to the information systems has traditionally been post-mortem whereas this dissertation provided a predictive solution where organizations can determine how susceptible their environments are to security breaches in a proactive way. ^
Resumo:
The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2 = 0.97, r jackknife 2 = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2 = 0.75, r jackknife 2 = 0.46), WTP (r apparent 2 = 0.75, r jackknife 2 = 0.49), and WTOC (r apparent 2 = 0.79, r jackknife 2 = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.
Resumo:
The present dissertation consists of two studies that combine personnel selection, safety performance, and job performance literatures to answer an important question: are safe workers better workers? Study 1 tested a predictive model of safety performance to examine personality characteristics (conscientiousness and agreeableness), and two novel behavioral constructs (safety orientation and safety judgment) as predictors of safety performance in a sample of forklift loaders/operators (N = 307). Analyses centered on investigating safety orientation as a proximal predictor and determinant of safety performance. Study 2 replicated Study 1 and explored the relationship between safety performance and job performance by testing an integrative model in a sample of machine operators and construction crewmembers (N = 323). Both Study 1 and Study 2 found conscientiousness, agreeableness, and safety orientation to be good predictors of safety performance. While both personality and safety orientation were positively related to safety performance, safety orientation proved to be a more proximal determinant of safety performance. Across studies, results surrounding safety judgment as a predictor of safety performance were inconclusive, suggesting possible issues with measurement of the construct. Study 2 found a strong relationship between safety performance and job performance. In addition, safety performance served as a mediator between predictors (conscientiousness, agreeableness and safety orientation) and job performance. Together these findings suggest that safe workers are indeed better workers, challenging previous viewpoints to the contrary. Further, results implicate the viability of personnel selection as means of promoting safety in organizations.^
Resumo:
There are several abiotic factors reported in the literature as regulators of the distribution of fish species in marine environments. Among them stand out structural complexity of habitat, benthic composition, depth and distance from the coast are usually reported as positive influencers in the diversity of difentes species, including reef fish. These are dominant elements in reef systems and considered high ecological and socioeconomic importance. Understanding how the above factors influence the distribution and habitat use of reef fish communities are important for their management and conservation. Thus, this study aims to evaluate the influence of these variables on the community of reef fishes along an environmental gradient of depth and distance from shore base in sandstone reefs in the coast of state of Rio Grande do Norte, Brazil. These variables are also used for creating a simple predictive model reef fish biomass for the environment studied. Data collection was performed through visual surveys in situ, and recorded environmental data (structural complexity of habitat, type of coverage of the substrate, benthic invertebrates) and ecological (wealth, abundance and reef fish size classes). As a complement, information on the diet were raised through literature and the biomass was estimated from the length-weight relationship of each species. Overall, the reefs showed a low coverage by corals and the Shallow reefs, Intermediate I and II dominated by algae and the Funds by algae and sponges. The complexity has increased along the gradient and positively influenced the species richness and abundance. Both attributes influenced in the structure of the reef fish community, increasing the richness, abundance and biomass of fish as well as differentiating the trophic structure of the community along the depth gradient and distance from the coast. Distribution and use of habitat by recifas fish was associated with food availability. The predictor model identified depth, roughness and coverage for foliose algae, calcareous algae and soft corals as the most significant variables influencing in the biomass of reef fish. In short, the description and understanding of these patterns are important steps to elucidate the ecological processes. In this sense, our approach provides a new understanding of the structure of the reef fish community of Rio Grande do Norte, allowing understand a part of a whole and assist future monitoring actions, evaluation, management and conservation of these and other reefs of Brazil.
Resumo:
The population, distribution and range of the Ross's gull in North America remain poorly understood, as does almost every aspect of its ecology and biology. It breeds at a few disparate locations in the Canadian Arctic and is an annual fall migrant in northern Alaska where tens of thousands occur in the nearshore waters of the Beaufort and Chukchi Seas, but little else is known about the distribution, habitat requirements, migratory routes and wintering areas used by this species. In order to clarify the status of the Ross's gull in North America I sought to discover new breeding sites in the Canadian High Arctic in order to characterize nesting habitat requirements, develop a predictive model with which to identify suitable nesting habitat for Ross's gulls, and refresh outdated estimates of the number of individuals migrating past Point Barrow, Alaska. Taken together, my findings provide a comprehensive account of the current status of the Ross's gull in North America.
Resumo:
Contexte: La douleur chronique non cancéreuse (DCNC) génère des retombées économiques et sociétales importantes. L’identification des patients à risque élevé d’être de grands utilisateurs de soins de santé pourrait être d’une grande utilité; en améliorant leur prise en charge, il serait éventuellement possible de réduire leurs coûts de soins de santé. Objectif: Identifier les facteurs prédictifs bio-psycho-sociaux des grands utilisateurs de soins de santé chez les patients souffrant de DCNC et suivis en soins de première ligne. Méthodologie: Des patients souffrant d’une DCNC modérée à sévère depuis au moins six mois et bénéficiant une ordonnance valide d’un analgésique par un médecin de famille ont été recrutés dans des pharmacies communautaires du territoire du Réseau universitaire intégré de santé (RUIS), de l’Université de Montréal entre Mai 2009 et Janvier 2010. Ce dernier est composé des six régions suivantes : Mauricie et centre du Québec, Laval, Montréal, Laurentides, Lanaudière et Montérégie. Les caractéristiques bio-psycho-sociales des participants ont été documentées à l’aide d’un questionnaire écrit et d’une entrevue téléphonique au moment du recrutement. Les coûts directs de santé ont été estimés à partir des soins et des services de santé reçus au cours de l’année précédant et suivant le recrutement et identifiés à partir de la base de données de la Régie d’Assurance maladie du Québec, RAMQ (assureur publique de la province du Québec). Ces coûts incluaient ceux des hospitalisations reliées à la douleur, des visites à l’urgence, des soins ambulatoires et de la médication prescrite pour le traitement de la douleur et la gestion des effets secondaires des analgésiques. Les grands utilisateurs des soins de santé ont été définis comme étant ceux faisant partie du quartile le plus élevé de coûts directs annuels en soins de santé dans l’année suivant le recrutement. Des modèles de régression logistique multivariés et le critère d’information d’Akaike ont permis d’identifier les facteurs prédictifs des coûts directs élevés en soins de santé. Résultats: Le coût direct annuel médian en soins de santé chez les grands utilisateurs de soins de santé (63 patients) était de 7 627 CAD et de 1 554 CAD pour les utilisateurs réguliers (188 patients). Le modèle prédictif final du risque d’être un grand utilisateur de soins de santé incluait la douleur localisée au niveau des membres inférieurs (OR = 3,03; 95% CI: 1,20 - 7,65), la réduction de la capacité fonctionnelle liée à la douleur (OR = 1,24; 95% CI: 1,03 - 1,48) et les coûts directs en soins de santé dans l’année précédente (OR = 17,67; 95% CI: 7,90 - 39,48). Les variables «sexe», «comorbidité», «dépression» et «attitude envers la guérison médicale» étaient également retenues dans le modèle prédictif final. Conclusion: Les patients souffrant d’une DCNC au niveau des membres inférieurs et présentant une détérioration de la capacité fonctionnelle liée à la douleur comptent parmi ceux les plus susceptibles d’être de grands utilisateurs de soins et de services. Le coût direct en soins de santé dans l’année précédente était également un facteur prédictif important. Améliorer la prise en charge chez cette catégorie de patients pourrait influencer favorablement leur état de santé et par conséquent les coûts assumés par le système de santé.
Resumo:
The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.
Resumo:
Bakgrund: Employer Branding är ett relativt nytt begrepp som har börjat användas som en strategi inom Human Resource Management. Genom att utveckla ett Employer Brand kan or-ganisationer attrahera och behålla talangfull arbetskraft och på så vis säkra sin överlevnad. Det saknas emellertid forskning på hur Employer Branding kan användas i offentlig verksamhet för att attrahera den senaste generationen på arbetsmarknaden; Generation Y. Syfte: Öka förståelse för hur statliga myndigheter kan arbeta med Employer Branding för att attrahera Generation Y. Metod: Studien baseras på kvalitativ metod och har en fenomenologisk samt deduktiv forsk-ningsansats. Undersökningsdesignen var i form av en fallstudie. Nio semistrukturerade inter-vjuer har genomförts med respondenter på Bolagsverket, varav fyra intervjuer med personer som har inflytande över Employer Branding och fem med personer ur Generation Y. Teorier: "Employer Branding Predictive Model" Slutsatser: I studien visar att den statliga arbetsgivaren är attraktiv för Generation Y. Proble-matiken ligger i att det finns brister beträffande hur kommunikationen av arbetsgivarvarumärket ser ut externt. Utan en uttalad målgrupp och ett uttalat Employee Value Proposition blir den externa kommunikationen otydlig vilket minskar arbetsgivarens attraktionskraft hos potentiella arbetstagare. Attraktiviteten uppstår först när individen från Generation Y redan rekryterats in i organisationen.