903 resultados para Predicting model
Resumo:
HIV risk in vulnerable groups such as itinerant male street labourers is often examined via a focus on individual determinants. This study provides a test of a modified Information-Motivation-Behavioral Skills (IMB) model to predict condom use behaviour among male street workers in urban Vietnam. In a cross-sectional survey using a social mapping technique, 450 male street labourers from 13 districts of Hanoi, Vietnam were recruited and interviewed. Collected data were first examined for completeness; structural equation modelling was then employed to test the model fit. Condoms were used inconsistently by many of these men, and usage varied in relation to a number of factors. A modified IMB model had a better fit than the original IMB model in predicting condom use behaviour. This modified model accounted for 49% of the variance, versus 10% by the original version. In the modified model, the influence of psychosocial factors was moderately high, whilst the influence of HIV prevention information, motivation and perceived behavioural skills was moderately low, explaining in part the limited level of condom use behaviour. This study provides insights into social factors that should be taken into account in public health planning to promote safer sexual behaviour among Asian male street labourers.
Resumo:
Statistical analyses of health program participation seek to address a number of objectives compatible with the evaluation of demand for current resources. In this spirit, a spatial hierarchical model is developed for disentangling patterns in participation at the small area level, as a function of population-based demand and additional variation. For the former, a constrained gravity model is proposed to quantify factors associated with spatial choice and account for competition effects, for programs delivered by multiple clinics. The implications of gravity model misspecification within a mixed effects framework are also explored. The proposed model is applied to participation data from a no-fee mammography program in Brisbane, Australia. Attention is paid to the interpretation of various model outputs and their relevance for public health policy.
Resumo:
Length scale-down (LS) model tests have been traditionally employed for laboratory studies on aeolian vibration of transmission line conductors. The span adopted is normally 30 m and is recommended by the relevant Indian, as well as other, standards. The traditionally adopted length of the LS model is reexamined herein to establish the rationale behind the choice. Based on the theoretical studies discussed, certain guidelines for the choice of model span of conductor are emphasized. In addition, the adequacy of the LS span as a tool for predicting the performance of the full span is reestablished.
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998-99 and 1999-2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM's cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat-fallow and wheat-chickpea rotations (1987-98) were nevertheless well simulated when the soil water content in 0-0.45 m soil depth was set to 'air dry' at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH 4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM's nitrogen module. APSIM was capable of predicting long-term trends (1985-98) in soil organic matter in wheat-fallow and wheat-chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat-chickpea rotations at Tel Hadya.
Resumo:
For pasture growth in the semi-arid tropics of north-east Australia, where up to 80% of annual rainfall occurs between December and March, the timing and distribution of rainfall events is often more important than the total amount. In particular, the timing of the 'green break of the season' (GBOS) at the end of the dry season, when new pasture growth becomes available as forage and a live-weight gain is measured in cattle, affects several important management decisions that prevent overgrazing and pasture degradation. Currently, beef producers in the region use a GBOS rule based on rainfall (e. g. 40mm of rain over three days by 1 December) to define the event and make their management decisions. A survey of 16 beef producers in north-east Queensland shows three quarters of respondents use a rainfall amount that occurs in only half or less than half of all years at their location. In addition, only half the producers expect the GBOS to occur within two weeks of the median date calculated by the CSIRO plant growth days model GRIM. This result suggests that in the producer rules, either the rainfall quantity or the period of time over which the rain is expected, is unrealistic. Despite only 37% of beef producers indicating that they use a southern oscillation index (SOI) forecast in their decisions, cross validated LEPS (linear error in probability space) analyses showed both the average 3 month July-September SOI and the 2 month August-September SOI have significant forecast skill in predicting the probability of both the amount of wet season rainfall and the timing of the GBOS. The communication and implementation of a rigorous and realistic definition of the GBOS, and the likely impacts of anthropogenic climate change on the region are discussed in the context of the sustainable management of northern Australian rangelands.
Resumo:
Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
The feasibility of state-wide eradication of 41 invasive plant taxa currently listed as ‘Class 1 declared pests’ under the Queensland Land Protection (Pest and Stock Route Management) Act 2002 was assessed using the predictive model ‘WeedSearch’. Results indicated that all but one species (Alternanthera philoxeroides) could be eradicated, provided sufficient funding and labour were available. Slightly less than one quarter (24.4%) (n = 10) of Class 1 weed taxa could be eradicated for less than $100 000 per taxon. An additional 43.9% (n = 18) could be eradicated for between $100 000 and $1M per taxon. Hence, 68.3% of Class 1 weed taxa (n = 28) could be eradicated for less than $1M per taxon. Eradication of 29.3% (n = 12) is predicted to cost more than $1M per taxon. Comparison of these WeedSearch outputs with either empirical analysis or results from a previous application of the model suggests that these costs may, in fact, be underestimates. Considering the likelihood that each weed will cost the state many millions of dollars in long-term losses (e.g. losses to primary production, environmental impacts and control costs), eradication seems a wise investment. Even where predicted costs are over $1M, eradication can still offer highly favourable benefit:cost ratios. The total (cumulative) cost of eradication of all 41 weed taxa is substantial; for all taxa, the estimated cost of eradication in the first year alone is $8 618 000. This study provides important information for policy makers, who must decide where to invest public funding.
Resumo:
There are two key types of selection in a plant breeding program, namely selection of hybrids for potential commercial use and the selection of parents for use in future breeding. Oakey et al. (in Theoretical and Applied Genetics 113, 809-819, 2006) showed how both of these aims could be achieved using pedigree information in a mixed model analysis in order to partition genetic effects into additive and non-additive effects. Their approach was developed for field trial data subject to spatial variation. In this paper we extend the approach for data from trials subject to interplot competition. We show how the approach may be used to obtain predictions of pure stand additive and non-additive effects. We develop the methodology in the context of a single field trial using an example from an Australian sorghum breeding program.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.
Resumo:
This paper provides a first look at the acceptance of Accountable-eHealth (AeH) systems–a new genre of eHealth systems designed to manage information privacy concerns that hinder the proliferation of eHealth. The underlying concept of AeH systems is appropriate use of information through after-the-fact accountability for intentional misuse of information by healthcare professionals. An online questionnaire survey was utilised for data collection from three educational institutions in Queensland, Australia. A total of 23 hypotheses relating to 9 constructs were tested using a structural equation modelling technique. The moderation effects on the hypotheses were also tested based on six moderation factors to understand their role on the designed research model. A total of 334 valid responses were received. The cohort consisted of medical, nursing and other health related students studying at various levels in both undergraduate and postgraduate courses. Hypothesis testing provided sufficient data to accept 7 hypotheses. The empirical research model developed was capable of predicting 47.3% of healthcare professionals’ perceived intention to use AeH systems. All six moderation factors showed significant influence on the research model. A validation of this model with a wider survey cohort is recommended as a future study.
Resumo:
Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.
Resumo:
A numerical modelling technique for predicting the detailed performance of a double-inlet type two-stage pulse tube refrigerator has been developed. The pressure variations in the compressor, pulse tube, and reservoir were derived, assuming the stroke volume variation of the compressor to be sinusoidal. The relationships of mass flowrates, volume flowrates, and temperature as a function of time and position were developed. The predicted refrigeration powers are calculated by considering the effect of void volumes and the phase shift between pressure and mass flowrate. These results are compared with the experimental results of a specific pulse tube refrigerator configuration and an existing theoretical model. The analysis shows that the theoretical predictions are in good agreement with each other.
Resumo:
Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.