212 resultados para Predicciones
Resumo:
Investigaciones previas han demostrado que los profesores poseen concepciones sobre el aprendizaje que se van construyendo en escenarios socioculturales compartidos con otras personas, en los que elaboran teorías que resultan útiles para generar explicaciones y predicciones adaptadas al entorno físico y social. En el presente trabajo se describen los resultados de un estudio descriptivo de la variable "Concepciones sobre la evaluación" en docentes universitarios de ciencias, formados y en formación, desde el enfoque de las teorías implícitas. Participaron del estudio 28 docentes formados y 38 docentes en formación pertenecientes a las facultades de Ciencias Exactas y Naturales y de Ingeniería de la Universidad Nacional de Mar del Plata. Se utilizó un cuestionario de dilemas diseñado y validado por el grupo que lleva a cabo la investigación. Los resultados muestran un predominio de la teoría interpretativa, tanto en docentes formados como en formación, en todos los aspectos indagados. Estos resultados aportan evidencia empírica a favor de las investigaciones que muestran que las concepciones que se poseen se adquieren a lo largo del proceso de aprendizaje y no son un resultado directo de la educación formal recibida
Resumo:
En todas las disciplinas deportivas, la técnica representa un factor determinante de la preparación. El aprendizaje y el perfeccionamiento técnico constituyen un objetivo primario del entrenamiento. El entrenador debe de proporcionar información a los deportistas que faciliten la comprensión del proceso de aprendizaje, de programar adecuadamente las sesiones de entrenamiento dirigidas a la adquisición de la técnica, de implementar estrategias adecuadas e individualizadas de corrección de los errores. Para incrementar la comprensión del aprendizaje es esencial referirse a la teoría básica. Las diversas teorías del movimiento se proponen como modelo para elaborar predicciones verificables a nivel empírico y extraer indicaciones aplicables para estructurar adecuadamente la enseñanza de las habilidades motrices. En el presente trabajo se ilustran y discuten las principales líneas teóricas y didácticas de la teoría del esquema de Richard Schmidt. Los constructos innovadores, presentados desde el punto de vista teórico, son: el programa motor generalizado y el esquema motor, fundamentado en el procesamiento de informaciones relativas a condiciones iniciales, parámetros utilizados para la respuesta, feedback sensorial y resultados obtenidos. Partiendo de estos conceptos se dan indicaciones para aplicar en la práctica, entre otras, la comprensión del movimiento, la reconsideración de los errores y la importancia de la variabilidad de la práctica
Resumo:
La teoría generativa y la teoría sistémico-funcional pueden concebirse como teorías científicas: Han confirmado hipótesis, proveen explicaciones y, a partir de estas últimas, efectúan predicciones. Sin embargo, ambas teorías manejan supuestos incompatibles sobre el mismo objeto: el lenguaje. Después de analizar el problema de las confirmaciones y las explicaciones en lingüística, se intentará demostrar que esa incompatibilidad puede resolverse mediante un "principio de complementariedad": El lenguaje es, al mismo tiempo, una "facultad de la mente" y un "producto de la cultura", aunque los dos aspectos (el "mental" y el "cultural") no puedan captarse en el ámbito de una sola teoría.
Resumo:
Investigaciones previas han demostrado que los profesores poseen concepciones sobre el aprendizaje que se van construyendo en escenarios socioculturales compartidos con otras personas, en los que elaboran teorías que resultan útiles para generar explicaciones y predicciones adaptadas al entorno físico y social. En el presente trabajo se describen los resultados de un estudio descriptivo de la variable "Concepciones sobre la evaluación" en docentes universitarios de ciencias, formados y en formación, desde el enfoque de las teorías implícitas. Participaron del estudio 28 docentes formados y 38 docentes en formación pertenecientes a las facultades de Ciencias Exactas y Naturales y de Ingeniería de la Universidad Nacional de Mar del Plata. Se utilizó un cuestionario de dilemas diseñado y validado por el grupo que lleva a cabo la investigación. Los resultados muestran un predominio de la teoría interpretativa, tanto en docentes formados como en formación, en todos los aspectos indagados. Estos resultados aportan evidencia empírica a favor de las investigaciones que muestran que las concepciones que se poseen se adquieren a lo largo del proceso de aprendizaje y no son un resultado directo de la educación formal recibida
Resumo:
En todas las disciplinas deportivas, la técnica representa un factor determinante de la preparación. El aprendizaje y el perfeccionamiento técnico constituyen un objetivo primario del entrenamiento. El entrenador debe de proporcionar información a los deportistas que faciliten la comprensión del proceso de aprendizaje, de programar adecuadamente las sesiones de entrenamiento dirigidas a la adquisición de la técnica, de implementar estrategias adecuadas e individualizadas de corrección de los errores. Para incrementar la comprensión del aprendizaje es esencial referirse a la teoría básica. Las diversas teorías del movimiento se proponen como modelo para elaborar predicciones verificables a nivel empírico y extraer indicaciones aplicables para estructurar adecuadamente la enseñanza de las habilidades motrices. En el presente trabajo se ilustran y discuten las principales líneas teóricas y didácticas de la teoría del esquema de Richard Schmidt. Los constructos innovadores, presentados desde el punto de vista teórico, son: el programa motor generalizado y el esquema motor, fundamentado en el procesamiento de informaciones relativas a condiciones iniciales, parámetros utilizados para la respuesta, feedback sensorial y resultados obtenidos. Partiendo de estos conceptos se dan indicaciones para aplicar en la práctica, entre otras, la comprensión del movimiento, la reconsideración de los errores y la importancia de la variabilidad de la práctica
Resumo:
Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.
Resumo:
En este trabajo se describe el subsistema de control térmico de PHI y se presentan las predicciones de temperaturas obtenidas para los distintos casos de carga. Debido a la naturaleza de la órbita seguida por el satélite en el cual PHI va embarcado (Solar Orbiter), el ambiente en el cual va a tener que operar PHI será muy exigente, convirtiendo el diseño térmico en un auténtico desafío. Los resultados obtenidos muestran la viabilidad de PHI desde el punto de vista térmico, aunque indiscutiblemente el instrumento va a operar en un entorno térmico muy hostil.
Resumo:
RESUMEN La dispersión del amoniaco (NH3) emitido por fuentes agrícolas en medias distancias, y su posterior deposición en el suelo y la vegetación, pueden llevar a la degradación de ecosistemas vulnerables y a la acidificación de los suelos. La deposición de NH3 suele ser mayor junto a la fuente emisora, por lo que los impactos negativos de dichas emisiones son generalmente mayores en esas zonas. Bajo la legislación comunitaria, varios estados miembros emplean modelos de dispersión inversa para estimar los impactos de las emisiones en las proximidades de las zonas naturales de especial conservación. Una revisión reciente de métodos para evaluar impactos de NH3 en distancias medias recomendaba la comparación de diferentes modelos para identificar diferencias importantes entre los métodos empleados por los distintos países de la UE. En base a esta recomendación, esta tesis doctoral compara y evalúa las predicciones de las concentraciones atmosféricas de NH3 de varios modelos bajo condiciones, tanto reales como hipotéticas, que plantean un potencial impacto sobre ecosistemas (incluidos aquellos bajo condiciones de clima Mediterráneo). En este sentido, se procedió además a la comparación y evaluación de varias técnicas de modelización inversa para inferir emisiones de NH3. Finalmente, se ha desarrollado un modelo matemático simple para calcular las concentraciones de NH3 y la velocidad de deposición de NH3 en ecosistemas vulnerables cercanos a una fuente emisora. La comparativa de modelos supuso la evaluación de cuatro modelos de dispersión (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 y LADD v2010) en un amplio rango de casos hipotéticos (dispersión de NH3 procedente de distintos tipos de fuentes agrícolas de emisión). La menor diferencia entre las concentraciones medias estimadas por los distintos modelos se obtuvo para escenarios simples. La convergencia entre las predicciones de los modelos fue mínima para el escenario relativo a la dispersión de NH3 procedente de un establo ventilado mecánicamente. En este caso, el modelo ADMS predijo concentraciones significativamente menores que los otros modelos. Una explicación de estas diferencias podríamos encontrarla en la interacción de diferentes “penachos” y “capas límite” durante el proceso de parametrización. Los cuatro modelos de dispersión fueron empleados para dos casos reales de dispersión de NH3: una granja de cerdos en Falster (Dinamarca) y otra en Carolina del Norte (EEUU). Las concentraciones medias anuales estimadas por los modelos fueron similares para el caso americano (emisión de granjas ventiladas de forma natural y balsa de purines). La comparación de las predicciones de los modelos con concentraciones medias anuales medidas in situ, así como la aplicación de los criterios establecidos para la aceptación estadística de los modelos, permitió concluir que los cuatro modelos se comportaron aceptablemente para este escenario. No ocurrió lo mismo en el caso danés (nave ventilada mecánicamente), en donde el modelo LADD no dio buenos resultados debido a la ausencia de procesos de “sobreelevacion de penacho” (plume-rise). Los modelos de dispersión dan a menudo pobres resultados en condiciones de baja velocidad de viento debido a que la teoría de dispersión en la que se basan no es aplicable en estas condiciones. En situaciones de frecuente descenso en la velocidad del viento, la actual guía de modelización propone usar un modelo que sea eficaz bajo dichas condiciones, máxime cuando se realice una valoración que tenga como objeto establecer una política de regularización. Esto puede no ser siempre posible debido a datos meteorológicos insuficientes, en cuyo caso la única opción sería utilizar un modelo más común, como la versión avanzada de los modelos Gausianos ADMS o AERMOD. Con el objetivo de evaluar la idoneidad de estos modelos para condiciones de bajas velocidades de viento, ambos modelos fueron utilizados en un caso con condiciones Mediterráneas. Lo que supone sucesivos periodos de baja velocidad del viento. El estudio se centró en la dispersión de NH3 procedente de una granja de cerdos en Segovia (España central). Para ello la concentración de NH3 media mensual fue medida en 21 localizaciones en torno a la granja. Se realizaron también medidas de concentración de alta resolución en una única localización durante una campaña de una semana. En este caso, se evaluaron dos estrategias para mejorar la respuesta del modelo ante bajas velocidades del viento. La primera se basó en “no zero wind” (NZW), que sustituyó periodos de calma con el mínimo límite de velocidad del viento y “accumulated calm emissions” (ACE), que forzaban al modelo a calcular las emisiones totales en un periodo de calma y la siguiente hora de no-calma. Debido a las importantes incertidumbres en los datos de entrada del modelo (inputs) (tasa de emisión de NH3, velocidad de salida de la fuente, parámetros de la capa límite, etc.), se utilizó el mismo caso para evaluar la incertidumbre en la predicción del modelo y valorar como dicha incertidumbre puede ser considerada en evaluaciones del modelo. Un modelo dinámico de emisión, modificado para el caso de clima Mediterráneo, fue empleado para estimar la variabilidad temporal en las emisiones de NH3. Así mismo, se realizó una comparativa utilizando las emisiones dinámicas y la tasa constante de emisión. La incertidumbre predicha asociada a la incertidumbre de los inputs fue de 67-98% del valor medio para el modelo ADMS y entre 53-83% del valor medio para AERMOD. La mayoría de esta incertidumbre se debió a la incertidumbre del ratio de emisión en la fuente (50%), seguida por la de las condiciones meteorológicas (10-20%) y aquella asociada a las velocidades de salida (5-10%). El modelo AERMOD predijo mayores concentraciones que ADMS y existieron más simulaciones que alcanzaron los criterios de aceptabilidad cuando se compararon las predicciones con las concentraciones medias anuales medidas. Sin embargo, las predicciones del modelo ADMS se correlacionaron espacialmente mejor con las mediciones. El uso de valores dinámicos de emisión estimados mejoró el comportamiento de ADMS, haciendo empeorar el de AERMOD. La aplicación de estrategias destinadas a mejorar el comportamiento de este último tuvo efectos contradictorios similares. Con el objeto de comparar distintas técnicas de modelización inversa, varios modelos (ADMS, LADD y WindTrax) fueron empleados para un caso no agrícola, una colonia de pingüinos en la Antártida. Este caso fue empleado para el estudio debido a que suponía la oportunidad de obtener el primer factor de emisión experimental para una colonia de pingüinos antárticos. Además las condiciones eran propicias desde el punto de vista de la casi total ausencia de concentraciones ambiente (background). Tras el trabajo de modelización existió una concordancia suficiente entre las estimaciones obtenidas por los tres modelos. De este modo se pudo definir un factor de emisión de para la colonia de 1.23 g NH3 por pareja criadora por día (con un rango de incertidumbre de 0.8-2.54 g NH3 por pareja criadora por día). Posteriores aplicaciones de técnicas de modelización inversa para casos agrícolas mostraron también un buen compromiso estadístico entre las emisiones estimadas por los distintos modelos. Con todo ello, es posible concluir que la modelización inversa es una técnica robusta para estimar tasas de emisión de NH3. Modelos de selección (screening) permiten obtener una rápida y aproximada estimación de los impactos medioambientales, siendo una herramienta útil para evaluaciones de impactos en tanto que permite eliminar casos que presentan un riesgo potencial de daño bajo. De esta forma, lo recursos del modelo pueden Resumen (Castellano) destinarse a casos en donde la posibilidad de daño es mayor. El modelo de Cálculo Simple de los Límites de Impacto de Amoniaco (SCAIL) se desarrolló para obtener una estimación de la concentración media de NH3 y de la tasa de deposición seca asociadas a una fuente agrícola. Está técnica de selección, basada en el modelo LADD, fue evaluada y calibrada con diferentes bases de datos y, finalmente, validada utilizando medidas independientes de concentraciones realizadas cerca de las fuentes. En general SCAIL dio buenos resultados de acuerdo a los criterios estadísticos establecidos. Este trabajo ha permitido definir situaciones en las que las concentraciones predichas por modelos de dispersión son similares, frente a otras en las que las predicciones difieren notablemente entre modelos. Algunos modelos nos están diseñados para simular determinados escenarios en tanto que no incluyen procesos relevantes o están más allá de los límites de su aplicabilidad. Un ejemplo es el modelo LADD que no es aplicable en fuentes con velocidad de salida significativa debido a que no incluye una parametrización de sobreelevacion del penacho. La evaluación de un esquema simple combinando la sobreelevacion del penacho y una turbulencia aumentada en la fuente mejoró el comportamiento del modelo. Sin embargo más pruebas son necesarias para avanzar en este sentido. Incluso modelos que son aplicables y que incluyen los procesos relevantes no siempre dan similares predicciones. Siendo las razones de esto aún desconocidas. Por ejemplo, AERMOD predice mayores concentraciones que ADMS para dispersión de NH3 procedente de naves de ganado ventiladas mecánicamente. Existe evidencia que sugiere que el modelo ADMS infraestima concentraciones en estas situaciones debido a un elevado límite de velocidad de viento. Por el contrario, existen evidencias de que AERMOD sobreestima concentraciones debido a sobreestimaciones a bajas Resumen (Castellano) velocidades de viento. Sin embrago, una modificación simple del pre-procesador meteorológico parece mejorar notablemente el comportamiento del modelo. Es de gran importancia que estas diferencias entre las predicciones de los modelos sean consideradas en los procesos de evaluación regulada por los organismos competentes. Esto puede ser realizado mediante la aplicación del modelo más útil para cada caso o, mejor aún, mediante modelos múltiples o híbridos. ABSTRACT Short-range atmospheric dispersion of ammonia (NH3) emitted by agricultural sources and its subsequent deposition to soil and vegetation can lead to the degradation of sensitive ecosystems and acidification of the soil. Atmospheric concentrations and dry deposition rates of NH3 are generally highest near the emission source and so environmental impacts to sensitive ecosystems are often largest at these locations. Under European legislation, several member states use short-range atmospheric dispersion models to estimate the impact of ammonia emissions on nearby designated nature conservation sites. A recent review of assessment methods for short-range impacts of NH3 recommended an intercomparison of the different models to identify whether there are notable differences to the assessment approaches used in different European countries. Based on this recommendation, this thesis compares and evaluates the atmospheric concentration predictions of several models used in these impact assessments for various real and hypothetical scenarios, including Mediterranean meteorological conditions. In addition, various inverse dispersion modelling techniques for the estimation of NH3 emissions rates are also compared and evaluated and a simple screening model to calculate the NH3 concentration and dry deposition rate at a sensitive ecosystem located close to an NH3 source was developed. The model intercomparison evaluated four atmospheric dispersion models (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 and LADD v2010) for a range of hypothetical case studies representing the atmospheric dispersion from several agricultural NH3 source types. The best agreement between the mean annual concentration predictions of the models was found for simple scenarios with area and volume sources. The agreement between the predictions of the models was worst for the scenario representing the dispersion from a mechanically ventilated livestock house, for which ADMS predicted significantly smaller concentrations than the other models. The reason for these differences appears to be due to the interaction of different plume-rise and boundary layer parameterisations. All four dispersion models were applied to two real case studies of dispersion of NH3 from pig farms in Falster (Denmark) and North Carolina (USA). The mean annual concentration predictions of the models were similar for the USA case study (emissions from naturally ventilated pig houses and a slurry lagoon). The comparison of model predictions with mean annual measured concentrations and the application of established statistical model acceptability criteria concluded that all four models performed acceptably for this case study. This was not the case for the Danish case study (mechanically ventilated pig house) for which the LADD model did not perform acceptably due to the lack of plume-rise processes in the model. Regulatory dispersion models often perform poorly in low wind speed conditions due to the model dispersion theory being inapplicable at low wind speeds. For situations with frequent low wind speed periods, current modelling guidance for regulatory assessments is to use a model that can handle these conditions in an acceptable way. This may not always be possible due to insufficient meteorological data and so the only option may be to carry out the assessment using a more common regulatory model, such as the advanced Gaussian models ADMS or AERMOD. In order to assess the suitability of these models for low wind conditions, they were applied to a Mediterranean case study that included many periods of low wind speed. The case study was the dispersion of NH3 emitted by a pig farm in Segovia, Central Spain, for which mean monthly atmospheric NH3 concentration measurements were made at 21 locations surrounding the farm as well as high-temporal-resolution concentration measurements at one location during a one-week campaign. Two strategies to improve the model performance for low wind speed conditions were tested. These were ‘no zero wind’ (NZW), which replaced calm periods with the minimum threshold wind speed of the model and ‘accumulated calm emissions’ (ACE), which forced the model to emit the total emissions during a calm period during the first subsequent non-calm hour. Due to large uncertainties in the model input data (NH3 emission rates, source exit velocities, boundary layer parameters), the case study was also used to assess model prediction uncertainty and assess how this uncertainty can be taken into account in model evaluations. A dynamic emission model modified for the Mediterranean climate was used to estimate the temporal variability in NH3 emission rates and a comparison was made between the simulations using the dynamic emissions and a constant emission rate. Prediction uncertainty due to model input uncertainty was 67-98% of the mean value for ADMS and between 53-83% of the mean value for AERMOD. Most of this uncertainty was due to source emission rate uncertainty (~50%), followed by uncertainty in the meteorological conditions (~10-20%) and uncertainty in exit velocities (~5-10%). AERMOD predicted higher concentrations than ADMS and more of the simulations met the model acceptability criteria when compared with the annual mean measured concentrations. However, the ADMS predictions were better correlated spatially with the measurements. The use of dynamic emission estimates improved the performance of ADMS but worsened the performance of AERMOD and the application of strategies to improved model performance had similar contradictory effects. In order to compare different inverse modelling techniques, several models (ADMS, LADD and WindTrax) were applied to a non-agricultural case study of a penguin colony in Antarctica. This case study was used since it gave the opportunity to provide the first experimentally-derived emission factor for an Antarctic penguin colony and also had the advantage of negligible background concentrations. There was sufficient agreement between the emission estimates obtained from the three models to define an emission factor for the penguin colony (1.23 g NH3 per breeding pair per day with an uncertainty range of 0.8-2.54 g NH3 per breeding pair per day). This emission estimate compared favourably to the value obtained using a simple micrometeorological technique (aerodynamic gradient) of 0.98 g ammonia per breeding pair per day (95% confidence interval: 0.2-2.4 g ammonia per breeding pair per day). Further application of the inverse modelling techniques for a range of agricultural case studies also demonstrated good agreement between the emission estimates. It is concluded, therefore, that inverse dispersion modelling is a robust technique for estimating NH3 emission rates. Screening models that can provide a quick and approximate estimate of environmental impacts are a useful tool for impact assessments because they can be used to filter out cases that potentially have a minimal environmental impact allowing resources to be focussed on more potentially damaging cases. The Simple Calculation of Ammonia Impact Limits (SCAIL) model was developed as a screening model to provide an estimate of the mean NH3 concentration and dry deposition rate downwind of an agricultural source. This screening tool, based on the LADD model, was evaluated and calibrated with several experimental datasets and then validated using independent concentration measurements made near sources. Overall SCAIL performed acceptably according to established statistical criteria. This work has identified situations where the concentration predictions of dispersion models are similar and other situations where the predictions are significantly different. Some models are simply not designed to simulate certain scenarios since they do not include the relevant processes or are beyond the limits of their applicability. An example is the LADD model that is not applicable to sources with significant exit velocity since the model does not include a plume-rise parameterisation. The testing of a simple scheme combining a momentum-driven plume rise and increased turbulence at the source improved model performance, but more testing is required. Even models that are applicable and include the relevant process do not always give similar predictions and the reasons for this need to be investigated. AERMOD for example predicts higher concentrations than ADMS for dispersion from mechanically ventilated livestock housing. There is evidence to suggest that ADMS underestimates concentrations in these situations due to a high wind speed threshold. Conversely, there is also evidence that AERMOD overestimates concentrations in these situations due to overestimation at low wind speeds. However, a simple modification to the meteorological pre-processor appears to improve the performance of the model. It is important that these differences between the predictions of these models are taken into account in regulatory assessments. This can be done by applying the most suitable model for the assessment in question or, better still, using multiple or hybrid models.
Resumo:
Los terremotos constituyen una de las más importantes fuentes productoras de cargas dinámicas que actúan sobre las estructuras y sus cimentaciones. Cuando se produce un terremoto la energía liberada genera movimientos del terreno en forma de ondas sísmicas que pueden provocar asientos en las cimentaciones de los edificios, empujes sobre los muros de contención, vuelco de las estructuras y el suelo puede licuar perdiendo su capacidad de soporte. Los efectos de los terremotos en estructuras constituyen unos de los aspectos que involucran por su condición de interacción sueloestructura, disciplinas diversas como el Análisis Estructural, la Mecánica de Suelo y la Ingeniería Sísmica. Uno de los aspectos que han sido poco estudiados en el cálculo de estructuras sometidas a la acciones de los terremotos son los efectos del comportamiento no lineal del suelo y de los movimientos que pueden producirse bajo la acción de cargas sísmicas, tales como posibles despegues y deslizamientos. En esta Tesis se estudian primero los empujes sísmicos y posibles deslizamientos de muros de contención y se comparan las predicciones de distintos tipos de cálculos: métodos pseudo-estáticos como el de Mononobe-Okabe (1929) con la contribución de Whitman-Liao (1985), y formulaciones analíticas como la desarrollada por Veletsos y Younan (1994). En segundo lugar se estudia el efecto del comportamiento no lineal del terreno en las rigideces de una losa de cimentación superficial y circular, como la correspondiente a la chimenea de una Central Térmica o al edificio del reactor de una Central Nuclear, considerando su variación con frecuencia y con el nivel de cargas. Finalmente se estudian los posibles deslizamientos y separación de las losas de estas dos estructuras bajo la acción de terremotos, siguiendo la formulación propuesta por Wolf (1988). Para estos estudios se han desarrollado una serie de programas específicos (MUROSIS, VELETSOS, INTESES y SEPARSE) cuyos listados y detalles se incluyen en los Apéndices. En el capítulo 6 se incluyen las conclusiones resultantes de estos estudios y recomendaciones para futuras investigaciones. ABSTRACT Earthquakes constitute one of the most important sources of dynamic loads that acting on structures and foundations. When an earthquake occurs the liberated energy generates seismic waves that can give rise to structural vibrations, settlements of the foundations of buildings, pressures on retaining walls, and possible sliding, uplifting or even overturning of structures. The soil can also liquefy losing its capacity of support The study of the effects of earthquakes on structures involve the use of diverse disciplines such as Structural Analysis, Soil Mechanics and Earthquake Engineering. Some aspects that have been the subject of limited research in relation to the behavior of structures subjected to earthquakes are the effects of nonlinear soil behavior and geometric nonlinearities such as sliding and uplifting of foundations. This Thesis starts with the study of the seismic pressures and potential displacements of retaining walls comparing the predictions of two types of formulations and assessing their range of applicability and limitations: pseudo-static methods as proposed by Mononobe-Okabe (1929), with the contribution of Whitman-Liao (1985), and analytical formulations as the one developed by Veletsos and Younan (1994) for rigid walls. The Thesis deals next with the effects of nonlinear soil behavior on the dynamic stiffness of circular mat foundations like the chimney of a Thermal Power Station or the reactor building of a Nuclear Power Plant, as a function of frequency and level of forces. Finally the seismic response of these two structures accounting for the potential sliding and uplifting of the foundation under a given earthquake are studied, following an approach suggested by Wolf (1988). In order to carry out these studies a number of special purposes computer programs were developed (MUROSIS, VELETSOS, INTESES and SEPARSE). The listing and details of these programs are included in the appendices. The conclusions derived from these studies and recommendations for future work are presented in Chapter 6.
Resumo:
Desde los inicios de la codificación de vídeo digital hasta hoy, tanto la señal de video sin comprimir de entrada al codificador como la señal de salida descomprimida del decodificador, independientemente de su resolución, uso de submuestreo en los planos de diferencia de color, etc. han tenido siempre la característica común de utilizar 8 bits para representar cada una de las muestras. De la misma manera, los estándares de codificación de vídeo imponen trabajar internamente con estos 8 bits de precisión interna al realizar operaciones con las muestras cuando aún no se han transformado al dominio de la frecuencia. Sin embargo, el estándar H.264, en gran auge hoy en día, permite en algunos de sus perfiles orientados al mundo profesional codificar vídeo con más de 8 bits por muestra. Cuando se utilizan estos perfiles, las operaciones efectuadas sobre las muestras todavía sin transformar se realizan con la misma precisión que el número de bits del vídeo de entrada al codificador. Este aumento de precisión interna tiene el potencial de permitir unas predicciones más precisas, reduciendo el residuo a codificar y aumentando la eficiencia de codificación para una tasa binaria dada. El objetivo de este Proyecto Fin de Carrera es estudiar, utilizando las medidas de calidad visual objetiva PSNR (Peak Signal to Noise Ratio, relación señal ruido de pico) y SSIM (Structural Similarity, similaridad estructural), el efecto sobre la eficiencia de codificación y el rendimiento al trabajar con una cadena de codificación/descodificación H.264 de 10 bits en comparación con una cadena tradicional de 8 bits. Para ello se utiliza el codificador de código abierto x264, capaz de codificar video de 8 y 10 bits por muestra utilizando los perfiles High, High 10, High 4:2:2 y High 4:4:4 Predictive del estándar H.264. Debido a la ausencia de herramientas adecuadas para calcular las medidas PSNR y SSIM de vídeo con más de 8 bits por muestra y un tipo de submuestreo de planos de diferencia de color distinto al 4:2:0, como parte de este proyecto se desarrolla también una aplicación de análisis en lenguaje de programación C capaz de calcular dichas medidas a partir de dos archivos de vídeo sin comprimir en formato YUV o Y4M. ABSTRACT Since the beginning of digital video compression, the uncompressed video source used as input stream to the encoder and the uncompressed decoded output stream have both used 8 bits for representing each sample, independent of resolution, chroma subsampling scheme used, etc. In the same way, video coding standards force encoders to work internally with 8 bits of internal precision when working with samples before being transformed to the frequency domain. However, the H.264 standard allows coding video with more than 8 bits per sample in some of its professionally oriented profiles. When using these profiles, all work on samples still in the spatial domain is done with the same precision the input video has. This increase in internal precision has the potential of allowing more precise predictions, reducing the residual to be encoded, and thus increasing coding efficiency for a given bitrate. The goal of this Project is to study, using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity) objective video quality metrics, the effects on coding efficiency and performance caused by using an H.264 10 bit coding/decoding chain compared to a traditional 8 bit chain. In order to achieve this goal the open source x264 encoder is used, which allows encoding video with 8 and 10 bits per sample using the H.264 High, High 10, High 4:2:2 and High 4:4:4 Predictive profiles. Given that no proper tools exist for computing PSNR and SSIM values of video with more than 8 bits per sample and chroma subsampling schemes other than 4:2:0, an analysis application written in the C programming language is developed as part of this Project. This application is able to compute both metrics from two uncompressed video files in the YUV or Y4M format.
Resumo:
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
La presente tesis analiza constructiva y acústicamente los forjados de la Ciudad Universitaria de Madrid, para lo cual desarrolla, entre otros, los siguientes aspectos: - Clasifica y analiza constructivamente por décadas los forjados de una selección de edificios docentes de la Ciudad Universitaria de Madrid. - Relaciona mediante leyes de reciprocidad el comportamiento a ruido aéreo y ruido de impactos para cada tipología de forjado, basándose en valores experimentales medidos in situ en bandas de octava de frecuencias centrales entre 125 Hz y 2000 Hz. - Compara entre los resultados obtenidos al ensayar a ruido aéreo y a ruido de impactos recintos superpuestos y las predicciones realizadas mediante la aplicación de la formulación propuesta en el método general del vigente Documento Básico, Protección contra el ruido (CTE DB-HR) y UNE EN 12354. - Obtiene diferencias significativas entre ensayos y prediciones a ruido de impactos y demuestra estadísticamente que las prediciones se realizan con presencia de sesgo. - Demuestra que la existencia de la capa intermedia de arena en forjados de grandes volúmenes produce una disminución del nivel normalizado de presión sonora de ruido de impactos, cuantificando esta disminución entre 13 y 20 dB.
Resumo:
Este trabajo aborda el problema de modelizar sistemas din´amicos reales a partir del estudio de sus series temporales, usando una formulaci´on est´andar que pretende ser una abstracci´on universal de los sistemas din´amicos, independientemente de su naturaleza determinista, estoc´astica o h´ıbrida. Se parte de modelizaciones separadas de sistemas deterministas por un lado y estoc´asticos por otro, para converger finalmente en un modelo h´ıbrido que permite estudiar sistemas gen´ericos mixtos, esto es, que presentan una combinaci´on de comportamiento determinista y aleatorio. Este modelo consta de dos componentes, uno determinista consistente en una ecuaci´on en diferencias, obtenida a partir de un estudio de autocorrelaci´on, y otro estoc´astico que modeliza el error cometido por el primero. El componente estoc´astico es un generador universal de distribuciones de probabilidad, basado en un proceso compuesto de variables aleatorias, uniformemente distribuidas en un intervalo variable en el tiempo. Este generador universal es deducido en la tesis a partir de una nueva teor´ıa sobre la oferta y la demanda de un recurso gen´erico. El modelo resultante puede formularse conceptualmente como una entidad con tres elementos fundamentales: un motor generador de din´amica determinista, una fuente interna de ruido generadora de incertidumbre y una exposici´on al entorno que representa las interacciones del sistema real con el mundo exterior. En las aplicaciones estos tres elementos se ajustan en base al hist´orico de las series temporales del sistema din´amico. Una vez ajustados sus componentes, el modelo se comporta de una forma adaptativa tomando como inputs los nuevos valores de las series temporales del sistema y calculando predicciones sobre su comportamiento futuro. Cada predicci´on se presenta como un intervalo dentro del cual cualquier valor es equipro- bable, teniendo probabilidad nula cualquier valor externo al intervalo. De esta forma el modelo computa el comportamiento futuro y su nivel de incertidumbre en base al estado actual del sistema. Se ha aplicado el modelo en esta tesis a sistemas muy diferentes mostrando ser muy flexible para afrontar el estudio de campos de naturaleza dispar. El intercambio de tr´afico telef´onico entre operadores de telefon´ıa, la evoluci´on de mercados financieros y el flujo de informaci´on entre servidores de Internet son estudiados en profundidad en la tesis. Todos estos sistemas son modelizados de forma exitosa con un mismo lenguaje, a pesar de tratarse de sistemas f´ısicos totalmente distintos. El estudio de las redes de telefon´ıa muestra que los patrones de tr´afico telef´onico presentan una fuerte pseudo-periodicidad semanal contaminada con una gran cantidad de ruido, sobre todo en el caso de llamadas internacionales. El estudio de los mercados financieros muestra por su parte que la naturaleza fundamental de ´estos es aleatoria con un rango de comportamiento relativamente acotado. Una parte de la tesis se dedica a explicar algunas de las manifestaciones emp´ıricas m´as importantes en los mercados financieros como son los “fat tails”, “power laws” y “volatility clustering”. Por ´ultimo se demuestra que la comunicaci´on entre servidores de Internet tiene, al igual que los mercados financieros, una componente subyacente totalmente estoc´astica pero de comportamiento bastante “d´ocil”, siendo esta docilidad m´as acusada a medida que aumenta la distancia entre servidores. Dos aspectos son destacables en el modelo, su adaptabilidad y su universalidad. El primero es debido a que, una vez ajustados los par´ametros generales, el modelo se “alimenta” de los valores observables del sistema y es capaz de calcular con ellos comportamientos futuros. A pesar de tener unos par´ametros fijos, la variabilidad en los observables que sirven de input al modelo llevan a una gran riqueza de ouputs posibles. El segundo aspecto se debe a la formulaci´on gen´erica del modelo h´ıbrido y a que sus par´ametros se ajustan en base a manifestaciones externas del sistema en estudio, y no en base a sus caracter´ısticas f´ısicas. Estos factores hacen que el modelo pueda utilizarse en gran variedad de campos. Por ´ultimo, la tesis propone en su parte final otros campos donde se han obtenido ´exitos preliminares muy prometedores como son la modelizaci´on del riesgo financiero, los algoritmos de routing en redes de telecomunicaci´on y el cambio clim´atico. Abstract This work faces the problem of modeling dynamical systems based on the study of its time series, by using a standard language that aims to be an universal abstraction of dynamical systems, irrespective of their deterministic, stochastic or hybrid nature. Deterministic and stochastic models are developed separately to be merged subsequently into a hybrid model, which allows the study of generic systems, that is to say, those having both deterministic and random behavior. This model is a combination of two different components. One of them is deterministic and consisting in an equation in differences derived from an auto-correlation study and the other is stochastic and models the errors made by the deterministic one. The stochastic component is an universal generator of probability distributions based on a process consisting in random variables distributed uniformly within an interval varying in time. This universal generator is derived in the thesis from a new theory of offer and demand for a generic resource. The resulting model can be visualized as an entity with three fundamental elements: an engine generating deterministic dynamics, an internal source of noise generating uncertainty and an exposure to the environment which depicts the interactions between the real system and the external world. In the applications these three elements are adjusted to the history of the time series from the dynamical system. Once its components have been adjusted, the model behaves in an adaptive way by using the new time series values from the system as inputs and calculating predictions about its future behavior. Every prediction is provided as an interval, where any inner value is equally probable while all outer ones have null probability. So, the model computes the future behavior and its level of uncertainty based on the current state of the system. The model is applied to quite different systems in this thesis, showing to be very flexible when facing the study of fields with diverse nature. The exchange of traffic between telephony operators, the evolution of financial markets and the flow of information between servers on the Internet are deeply studied in this thesis. All these systems are successfully modeled by using the same “language”, in spite the fact that they are systems physically radically different. The study of telephony networks shows that the traffic patterns are strongly weekly pseudo-periodic but mixed with a great amount of noise, specially in the case of international calls. It is proved that the underlying nature of financial markets is random with a moderate range of variability. A part of this thesis is devoted to explain some of the most important empirical observations in financial markets, such as “fat tails”, “power laws” and “volatility clustering”. Finally it is proved that the communication between two servers on the Internet has, as in the case of financial markets, an underlaying random dynamics but with a narrow range of variability, being this lack of variability more marked as the distance between servers is increased. Two aspects of the model stand out as being the most important: its adaptability and its universality. The first one is due to the fact that once the general parameters have been adjusted , the model is “fed” on the observable manifestations of the system in order to calculate its future behavior. Despite the fact that the model has fixed parameters the variability in the observable manifestations of the system, which are used as inputs of the model, lead to a great variability in the possible outputs. The second aspect is due to the general “language” used in the formulation of the hybrid model and to the fact that its parameters are adjusted based on external manifestations of the system under study instead of its physical characteristics. These factors made the model suitable to be used in great variety of fields. Lastly, this thesis proposes other fields in which preliminary and promising results have been obtained, such as the modeling of financial risk, the development of routing algorithms for telecommunication networks and the assessment of climate change.
Resumo:
Esta tesis presenta un análisis teórico del funcionamiento de toberas magnéticas para la propulsión espacial por plasmas. El estudio está basado en un modelo tridimensional y bi-fluido de la expansión supersónica de un plasma caliente en un campo magnético divergente. El modelo básico es ampliado progresivamente con la inclusión de términos convectivos dominantes de electrones, el campo magnético inducido por el plasma, poblaciones electrónicas múltiples a distintas temperaturas, y la capacidad de integrar el flujo en la región de expansión lejana. La respuesta hiperbólica del plasma es integrada con alta precisión y eficiencia haciendo uso del método de las líneas características. Se realiza una caracterización paramétrica de la expansión 2D del plasma en términos del grado de magnetización de iones, la geometría del campo magnético, y el perfil inicial del plasma. Se investigan los mecanismos de aceleración, mostrando que el campo ambipolar convierte la energía interna de electrones en energía dirigida de iones. Las corrientes diamagnéticas de Hall, que pueden hallarse distribuidas en el volumen del plasma o localizadas en una delgada capa de corriente en el borde del chorro, son esenciales para la operación de la tobera, ya que la fuerza magnética repulsiva sobre ellas es la encargada de confinar radialmente y acelerar axialmente el plasma. El empuje magnético es la reacción a esta fuerza sobre el motor. La respuesta del plasma muestra la separación gradual hacia adentro de los tubos de iones respecto de los magnéticos, lo cual produce la formación de corrientes eléctricas longitudinales y pone el plasma en rotación. La ganancia de empuje obtenida y las pérdidas radiales de la pluma de plasma se evalúan en función de los parámetros de diseño. Se analiza en detalle la separación magnética del plasma aguas abajo respecto a las líneas magnéticas (cerradas sobre sí mismas), necesaria para la aplicación de la tobera magnética a fines propulsivos. Se demuestra que tres teorías existentes sobre separación, que se fundamentan en la resistividad del plasma, la inercia de electrones, y el campo magnético que induce el plasma, son inadecuadas para la tobera magnética propulsiva, ya que producen separación hacia afuera en lugar de hacia adentro, aumentando la divergencia de la pluma. En su lugar, se muestra que la separación del plasma tiene lugar gracias a la inercia de iones y la desmagnetización gradual del plasma que tiene lugar aguas abajo, que permiten la separación ilimitada del flujo de iones respecto a las líneas de campo en condiciones muy generales. Se evalúa la cantidad de plasma que permanece unida al campo magnético y retorna hacia el motor a lo largo de las líneas cerradas de campo, mostrando que es marginal. Se muestra cómo el campo magnético inducido por el plasma incrementa la divergencia de la tobera magnética y por ende de la pluma de plasma en el caso propulsivo, contrariamente a las predicciones existentes. Se muestra también cómo el inducido favorece la desmagnetización del núcleo del chorro, acelerando la separación magnética. La hipótesis de ambipolaridad de corriente local, común a varios modelos de tobera magnética existentes, es discutida críticamente, mostrando que es inadecuada para el estudio de la separación de plasma. Una inconsistencia grave en la derivación matemática de uno de los modelos más aceptados es señalada y comentada. Incluyendo una especie adicional de electrones supratérmicos en el modelo, se estudia la formación y geometría de dobles capas eléctricas en el interior del plasma. Cuando dicha capa se forma, su curvatura aumenta cuanto más periféricamente se inyecten los electrones supratérmicos, cuanto menor sea el campo magnético, y cuanto más divergente sea la tobera magnética. El plasma con dos temperaturas electrónicas posee un mayor ratio de empuje magnético frente a total. A pesar de ello, no se encuentra ninguna ventaja propulsiva de las dobles capas, reforzando las críticas existentes frente a las propuestas de estas formaciones como un mecanismo de empuje. Por último, se presenta una formulación general de modelos autosemejantes de la expansión 2D de una pluma no magnetizada en el vacío. El error asociado a la hipótesis de autosemejanza es calculado, mostrando que es pequeño para plumas hipersónicas. Tres modelos de la literatura son particularizados a partir de la formulación general y comparados. Abstract This Thesis presents a theoretical analysis of the operation of magnetic nozzles for plasma space propulsion. The study is based on a two-dimensional, two-fluid model of the supersonic expansion of a hot plasma in a divergent magnetic field. The basic model is extended progressively to include the dominant electron convective terms, the plasma-induced magnetic field, multi-temperature electron populations, and the capability to integrate the plasma flow in the far expansion region. The hyperbolic plasma response is integrated accurately and efficiently with the method of the characteristic lines. The 2D plasma expansion is characterized parametrically in terms of the ion magnetization strength, the magnetic field geometry, and the initial plasma profile. Acceleration mechanisms are investigated, showing that the ambipolar electric field converts the internal electron energy into directed ion energy. The diamagnetic electron Hall current, which can be distributed in the plasma volume or localized in a thin current sheet at the jet edge, is shown to be central for the operation of the magnetic nozzle. The repelling magnetic force on this current is responsible for the radial confinement and axial acceleration of the plasma, and magnetic thrust is the reaction to this force on the magnetic coils of the thruster. The plasma response exhibits a gradual inward separation of the ion streamtubes from the magnetic streamtubes, which focuses the jet about the nozzle axis, gives rise to the formation of longitudinal currents and sets the plasma into rotation. The obtained thrust gain in the magnetic nozzle and radial plasma losses are evaluated as a function of the design parameters. The downstream plasma detachment from the closed magnetic field lines, required for the propulsive application of the magnetic nozzle, is investigated in detail. Three prevailing detachment theories for magnetic nozzles, relying on plasma resistivity, electron inertia, and the plasma-induced magnetic field, are shown to be inadequate for the propulsive magnetic nozzle, as these mechanisms detach the plume outward, increasing its divergence, rather than focusing it as desired. Instead, plasma detachment is shown to occur essentially due to ion inertia and the gradual demagnetization that takes place downstream, which enable the unbounded inward ion separation from the magnetic lines beyond the turning point of the outermost plasma streamline under rather general conditions. The plasma fraction that remains attached to the field and turns around along the magnetic field back to the thruster is evaluated and shown to be marginal. The plasmainduced magnetic field is shown to increase the divergence of the nozzle and the resulting plasma plume in the propulsive case, and to enhance the demagnetization of the central part of the plasma jet, contrary to existing predictions. The increased demagnetization favors the earlier ion inward separation from the magnetic field. The local current ambipolarity assumption, common to many existing magnetic nozzle models, is critically discussed, showing that it is unsuitable for the study of plasma detachment. A grave mathematical inconsistency in a well-accepted model, related to the acceptance of this assumption, is found out and commented on. The formation and 2D shape of electric double layers in the plasma expansion is studied with the inclusion of an additional suprathermal electron population in the model. When a double layer forms, its curvature is shown to increase the more peripherally suprathermal electrons are injected, the lower the magnetic field strength, and the more divergent the magnetic nozzle is. The twoelectron- temperature plasma is seen to have a greater magnetic-to-total thrust ratio. Notwithstanding, no propulsive advantage of the double layer is found, supporting and reinforcing previous critiques to their proposal as a thrust mechanism. Finally, a general framework of self-similar models of a 2D unmagnetized plasma plume expansion into vacuum is presented and discussed. The error associated with the self-similarity assumption is calculated and shown to be small for hypersonic plasma plumes. Three models of the literature are recovered as particularizations from the general framework and compared.