934 resultados para Precipitation probabilities
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There is considerable seasonal-to-interannual variability in the runoff of major watersheds in the Sierra Nevada, Coastal, and Cascade ranges of California and southwestern Oregon. This variability is reflected in both the amount and timing of runoff. This study examines that variability using long historical streamflow records and seasonal mean temperature and precipitation. ... Precipitation is the only significant predictor for both amount and timing of runoff in the low elevation basins. As elevation increases, the models rely more and more on temperature to explain amount and timing of runoff.
Resumo:
Precipitation is a difficult variable to understand and predict. In this study, monthly precipitation in California is divided into two classes according to the monthly temperature to better diagnose the atmospheric circulation that causes precipitation, and to illustrate how temperature compounds the precipitation to runoff process.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The influence of ENSO on atmospheric circulation and precipitation over the western United States is presented from two perspectives. First, ENSO-associated circulation patterns over the North Pacific/North America sector were identified using an REOF (rotated empirical orthogonal function) analysis of the 700-mb height field and compositing these for extreme phases of the Southern Oscillation Index. ... Second, we examine the variability of precipitation during the warm and cool phases of ENSO for different locations in the western United States.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): An empirically derived multiple linear regression model is used to relate a local-scale dependent variable (either temperature, precipitation, or surface runoff) measured at individual gauging stations to six large-scale independent variables (temperature, precipitation, surface runoff, height to the 500-mbar pressure surface, and the zonal and meridional gradient across this surface). ...The area investigated is the western United States. ... The calibration data set is from 1948 through 1988 and includes data from 268 joint temperature and precipitation stations, 152 streamflow stations (which are converted to runoff data), and 24 gridded 500-mbar pressure height nodes.
Resumo:
The western United States is characterized by heterogeneous patterns of seasonal precipitation regimes due to the hierarchy of climatic controls that operate at different spatial scales. A climatology of intermonthly precipitation changes, using data from more than 4,000 stations including high-elevation sites, illustrate how different climatic controls explain the spatial distribution of the seasonal precipitation maximum. These results indicate that smaller-scale climatic controls must be considered along with larger-scale ones to explain patterns of spatial climate heterogeneity over mountainous areas. The results also offer important implications for scholars interested in assessing spatial climatic variations of the western United States at different timescales.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We have analyzed streamflow variations recorded at 15 USGS gauging stations in California during the past 90 years or so. The anomalies (departures from the 1960-1990 mean discharge) of streamflow on annual-to-decadal time scales are strongly correlated with precipitation anomalies in each drainage basin. ... Although causes of the decadal climate (precipitation) variability are not known with certainty, the use of streamflow records may help us understand the relative strengths of moisture sources and shift of the jet stream in atmospheric circulation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Torrey pine (Pinus torreyana Parry ex Carr.) has one of the most limited geographical ranges and population size in the Pinus genus; it is present only on Santa Rosa Island and on the coast between San Diego and Del Mar, where our research was conducted. A 168-year chronology (1827-1994) was developed using 28 increment cores extracted from 15 living and 2 dead stranding trees at Torrey Pines State Reserve, San Diego, California. ... The spatial correlation with western North America winter and spring precipitation, as well as with published tree-ring chronologies, indicates a connection with the American Southwest. Global correlation maps with winter sea level pressure and sea surface temperature are consistent with the hypothesis that San Diego precipitation is affected by a southerly displaced North Pacific storm track and by warmer water farther south, both leading to higher transport of lower latitude moisture.
Resumo:
A pivotal problem in Bayesian nonparametrics is the construction of prior distributions on the space M(V) of probability measures on a given domain V. In principle, such distributions on the infinite-dimensional space M(V) can be constructed from their finite-dimensional marginals---the most prominent example being the construction of the Dirichlet process from finite-dimensional Dirichlet distributions. This approach is both intuitive and applicable to the construction of arbitrary distributions on M(V), but also hamstrung by a number of technical difficulties. We show how these difficulties can be resolved if the domain V is a Polish topological space, and give a representation theorem directly applicable to the construction of any probability distribution on M(V) whose first moment measure is well-defined. The proof draws on a projective limit theorem of Bochner, and on properties of set functions on Polish spaces to establish countable additivity of the resulting random probabilities.
Resumo:
This paper provides an insight into the long-term trends of the four seasonal and annual precipitations in various climatological regions and sub-regions in India. The trends were useful to investigate whether Indian seasonal rainfall is changing in terms of magnitude or location-wise. Trends were assessed over the period of 1954-2003 using parametric ordinary least square fits and non-parametric Mann-Kendall technique. The trend significance was tested at the 95% confidence level. Apart from the trends for individual climatological regions in India and the average for the whole of India, trends were also specifically determined for the possible smaller geographical areas in order to understand how different the trends would be from the bigger spatial scales. The smaller geographical regions consist of the whole southwestern continental state of Kerala. It was shown that there are decreasing trends in the spring and monsoon rainfall and increasing trends in the autumn and winter rainfalls. These changes are not always homogeneous over various regions, even in the very short scales implying a careful regional analysis would be necessary for drawing conclusions regarding agro-ecological or other local projects requiring change in rainfall information. Furthermore, the differences between the trend magnitudes and directions from the two different methods are significantly small and fall well within the significance limit for all the cases investigated in Indian regions (except where noted). © 2010 Springer-Verlag.
Resumo:
The use of microbial induced precipitation as a soil improvement technique has been growing in geotechnical domains where ureolytic bacteria that raise the pH of the system and induce calcium carbonate (CaCO3) precipitation are used. For many applications, it is useful to assess the degree of CaCO 3 precipitation by non-destructive testing. This study investigates the feasibility of S-wave velocity measurements to evaluate the amount of calcite precipitation by laboratory testing. Two sets of cemented specimen were tested. The first were samples terminated at different stages of cementation. The second were samples that went through different chemical treatments. These variations were made to find out if these factors would affect the S-wave velocity- cementation relationship. If chemical reaction efficiency was assumed to be constant throughout each test, the relationship between S-wave velocity (Vs) and the amount of CaCO3 precipitation was found to be approximately linear. This correlation between S-wave velocity and calcium carbonate precipitation validates its use as an indicator of the amount of calcite precipitation © 2011 ASCE.