988 resultados para Potentiometric titration
Resumo:
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH < = 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.
Resumo:
1. With the global increase in CO2 emissions, there is a pressing need for studies aimed at understanding the effects of ocean acidification on marine ecosystems. Several studies have reported that exposure to CO2 impairs chemosensory responses of juvenile coral reef fishes to predators. Moreover, one recent study pointed to impaired responses of reef fish to auditory cues that indicate risky locations. These studies suggest that altered behaviour following exposure to elevated CO2 is caused by a systemic effect at the neural level. 2. The goal of our experiment was to test whether juvenile damselfish Pomacentrus amboinensis exposed to different levels of CO2 would respond differently to a potential threat, the sight of a large novel coral reef fish, a spiny chromis, Acanthochromis polyancanthus, placed in a watertight bag. 3. Juvenile damselfish exposed to 440 (current day control), 550 or 700 µatm CO2 did not differ in their response to the chromis. However, fish exposed to 850 µatm showed reduced antipredator responses; they failed to show the same reduction in foraging, activity and area use in response to the chromis. Moreover, they moved closer to the chromis and lacked any bobbing behaviour typically displayed by juvenile damselfishes in threatening situations. 4. Our results are the first to suggest that response to visual cues of risk may be impaired by CO2 and provide strong evidence that the multi-sensory effects of CO2 may stem from systematic effects at the neural level.
Resumo:
As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO(2) levels of 469 (ambient), 807, 1164, and 1599 µatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO(2) level the first 12 h was observed in the elevated pCO(2) groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO(2) level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO(2) group. Shell length and height were reduced by 8 and 15 %, respectively, when pCO(2) increased from ambient to 1599 µatm. Development of normal hinges was negatively affected by elevated pCO(2) levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO(2) levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO(2) levels within the range of what is projected towards year 2250, although the initial drop in pCO(2) level may have overestimated the effect of the highest pCO(2) levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.
Resumo:
Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems.
Resumo:
Central to evaluating the effects of ocean acidification (OA) on coral reefs is understanding how calcification is affected by the dissolution of CO2 in sea water, which causes declines in carbonate ion concentration [CO3]2- and increases in bicarbonate ion concentration [HCO3]-. To address this topic, we manipulated [CO3]2- and [HCO3]- to test the effects on calcification of the coral Porites rus and the alga Hydrolithon onkodes, measured from the start to the end of a 15-day incubation, as well as in the day and night. [CO3]2- played a significant role in light and dark calcification of P. rus, whereas [HCO3]- mainly affected calcification in the light. Both [CO3]2- and [HCO3]- had a significant effect on the calcification of H. onkodes, but the strongest relationship was found with [CO3]2-. Our results show that the negative effect of declining [CO3]2- on the calcification of corals and algae can be partly mitigated by the use of [HCO3]- for calcification and perhaps photosynthesis. These results add empirical support to two conceptual models that can form a template for further research to account for the calcification response of corals and crustose coralline algae to OA.
Resumo:
To identify the properties of taxa sensitive and resistant to ocean acidification (OA), we tested the hypothesis that coral reef calcifiers differ in their sensitivity to OA as predictable outcomes of functional group alliances determined by conspicuous traits. We contrasted functional groups of eight corals and eight calcifying algae defined by morphology in corals and algae, skeletal structure in corals, spatial location of calcification in algae, and growth rate in corals and algae. The responses of calcification to OA were unrelated to morphology and skeletal structure in corals; they were, however, affected by growth rate in corals and algae (fast calcifiers were more sensitive than slow calcifiers), and by the site of calcification and morphology in algae. Species assemblages characterized by fast growth, and for algae, also cell-wall calcification, are likely to be ecological losers in the future ocean. This shift in relative success will affect the relative and absolute species abundances as well as the goods and services provided by coral reefs.
Resumo:
Newly settled recruits typically suffer high mortality from disturbances, but rapid growth reduces their mortality once size-escape thresholds are attained. Ocean acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects on survivorship have been demonstrated. We tested whether the reduced growth of coral recruits caused by OA would increase their mortality by prolonging their vulnerability to an acute disturbance: fish herbivory on surrounding algal turf. After two months' growth in ambient or elevated CO2 levels, the linear extension and calcification of coral (Acropora millepora) recruits decreased as CO2 partial pressure (pCO2) increased. When recruits were subjected to incidental fish grazing, their mortality was inversely size dependent. However, we also found an additive effect of pCO2 such that recruit mortality was higher under elevated pCO2 irrespective of size. Compared to ambient conditions, coral recruits needed to double their size at the highest pCO2 to escape incidental grazing mortality. This general trend was observed with three groups of predators (blenny, surgeonfish, and parrotfish), although the magnitude of the fish treatment varied among species. Our study demonstrates the importance of size-escape thresholds in early recruit survival and how OA can shift these thresholds, potentially intensifying population bottlenecks in benthic invertebrate recruitment.
Resumo:
Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.
Resumo:
We used a controlled CO2 perturbation experiment to test hypotheses about changes in diversity, composition and structure of soft-bottom intertidal macrobenthic assemblages, under realistic and locally relevant scenarios of seawater acidification. Patches of undisturbed sediment were collected from 2 types of intertidal sedimentary habitat in the Ria Formosa coastal lagoon (South Portugal) and exposed to 2 levels of seawater acidification (pH reduced by 0.3 and 0.6 units) and 1 unmanipulated (control) level. After 75 d the assemblages differed significantly between the 2 types of sediment and between field controls and the ex situ treatments, but not among the 3 pH levels tested. The naturally high values of total alkalinity buffered seawater from the changes imposed on carbonate chemistry and may have contributed to offsetting acidification at the local scale. Observed differences on biota were strongly related to the organic matter content and grain-size of the sediments, particularly to the fractions of medium and coarse sand. Soft-bottom intertidal macrofauna was significantly affected by the stress of being held in an artificial environment, but not by CO2-induced seawater acidification. Given the previously observed variations in the sensitivities of marine organisms to seawater acidification, direct extrapolations of the present findings to different regions or other types of assemblages do not seem advisable. However, the contribution of ex situ studies to the assessment of ecosystem-level responses to environmental disturbances could generally be improved by incorporating adequate field controls in the experimental design.
Resumo:
The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite-a metastable form of calcium carbonate with rapid dissolution kinetics-may become undersaturated by 2050. Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200 m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94-1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand.
Resumo:
The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO2-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH4Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na-free seawater indicate a potential role of Na/H plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.
Resumo:
We studied the interactive effects of pCO2 and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO2 (750 ppmv), and a range of growth light from 30 to 380 µmol photons/m**2/s. Elevated pCO2 significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO2 susceptibility to photoinactivation of photosystem II (sigma i) increased with increasing growth rate, but cells growing under elevated pCO2 showed no dependence between growth rate and sigma i, so under high growth light cells under elevated pCO2 were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO) and PsaC (PSI) protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO2.
Resumo:
Chitons (class Polyplacophora) are benthic grazing molluscs with an eight-part aragonitic shell armature. The radula, a serial tooth ribbon that extends internally more than half the length of the body, is mineralised on the active feeding teeth with iron magnetite apparently as an adaptation to constant grazing on rocky substrates. As the anterior feeding teeth are eroded they are shed and replaced with a new row. The efficient mineralisation and function of the radula could hypothetically be affected by changing oceans in two ways: changes in seawater chemistry (pH and pCO2) may impact the biomineralisation pathway, potentially leading to a weaker or altered density of the feeding teeth; rising temperatures could increase activity levels in these ectothermic animals, and higher feeding rates could increase wear on the feeding teeth beyond the animals' ability to synthesise, mineralise, and replace radular rows. We therefore examined the effects of pH and temperature on growth and integrity in the radula of the chiton Leptochiton asellus. Our experiment implemented three temperature (10, 15, 20 °C) and two pCO2 treatments (400 µatm, pH 8.0; 2000 µatm, pH 7.5) for six treatment groups. Animals (n = 50) were acclimated to the treatment conditions for a period of 4 weeks. This is sufficient time for growth of ca. 7-9 new tooth rows or 20% turnover of the mineralised portion. There was no significant difference in the number of new (non-mineralised) teeth or total tooth row count in any treatment. Examination of the radulae via SEM revealed no differences in microwear or breakage on the feeding cusps correlating to treatment groups. The shell valves also showed no signs of dissolution. As a lineage, chitons have survived repeated shifts in Earth's climate through geological time, and at least their radulae may be robust to future perturbations.
Resumo:
Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19-25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.
Resumo:
Shells of the bivalve Arctica islandica are used to reconstruct paleo-environmental conditions (e.g. temperature) via biogeochemical proxies, i.e. biogenic components that are related closely to environmental parameters at the time of shell formation. Several studies have shown that proxies like element and isotope-ratios can be affected by shell growth and microstructure. Thus it is essential to evaluate the impact of changing environmental parameters such as high pCO2 and consequent changes in carbonate chemistry on shell properties to validate these biogeochemical proxies for a wider range of environmental conditions. Growth experiments with Arctica islandica from the Western Baltic Sea kept under different pCO2 levels (from 380 to 1120 µatm) indicate no affect of elevated pCO2 on shell growth or crystal microstructure, indicating that A. islandica shows an adaptation to a wider range of pCO2 levels than reported for other species. Accordingly, proxy information derived from A. islandica shells of this region contains no pCO2 related bias.