957 resultados para Potassium Chlorate
Resumo:
Kuudenarvoista kromia käytetään natriumkloraatin valmistuksessa prosessin tuotantotehokkuuden ja turvallisuuden parantamiseksi. Kromia kuitenkin poistuu prosessista muutamaa reittiä pitkin. Koska kuuudenarvoisella kromilla on syöpää aiheuttavia, mutageenisiä sekä lisääntymiselle myrkyllisiä ominaisuuksia, olisi tärkeää ymmärtää, miten kromi kulkeutuu prosessin eri osiin, ja kuinka paljon sitä poistuu prosessista. Tämä on tärkeää, jotta osataan hallita kromin käytöstä aiheutuvat riskit, sekä toisaalta myös tehostaa kromin käyttöä prosessissa. Työn tarkoituksena oli tuottaa tietoa kromin käytöstä natriumkloraattiprosessissa. Työssä tutkittiin kromitasetta prosessin keskeisimmissä yksikköoperaatioissa. Myös kromin saostumista katodien pinnalle arvioitiin määrällisesti. Eri prosessinäytteistä tutkittiin lisäksi kromin hapetusasteita. Edellä mainittuja tutkimuskohteita varten määritettiin prosessinäytteiden kromipitoisuus. Eri prosessioperaatioille suoritettiin lisäksi taselaskelmat. Työn tuloksena esitettiin kromitase sekä yksikköoperaatioille että koko prosessille. Erinäisten epätarkkuustekijöiden vuoksi tasetta ei kuitenkaan pystytty määrittämään halutulla tarkkuudella, ja siksi työssä esitettyä tasetta voidaan pitää vain suuntaa antavana laskelmana. Katodien pinnalle saostunutta kromin määrää pidettiin kuitenkin oikean suuruusluokan tuloksena. Prosessinäytteiden hapetusasteita ei voitu arvioida, sillä saadut kokonaiskromitulokset eivät olleet täysin luotettavia. Huolimatta tulosten epätarkkuudesta, työ tuotti tärkeää tietoa prosessin toiminnasta kromin suhteen. Työtä voidaan hyödyntää jatkossa monin tavoin prosessin kromitaseen seurannassa.
Resumo:
The vasorelaxant effects of SR 47063 (4-(2-cyanimino-1,2-dihydropyrid-1-yl)-2,2-dimethyl-6-nitrochromene), a new K+-channel opener structurally related to levcromakalim, were examined in isolated human saphenous vein (HSV) and rat aorta (RA). HSV or RA rings were precontracted with either KCl or noradrenaline and cumulative relaxant concentration-response curves were obtained for SR 47063 (0.1 nM to 1 µM) in the presence or absence of 3 µM glibenclamide. SR 47063 potently relaxed HSV and RA precontracted with 20 mM (but not 60 mM) KCl or 10 µM noradrenaline in a concentration-dependent manner, showing slightly greater activity in the aorta. The potency of the effect of SR 47063 on HSV and RA was 12- and 58-fold greater, respectively, than that reported for the structurally related K+-channel opener levcromakalim. The vasorelaxant action of SR 47063 in both blood vessels was strongly inhibited by 3 µM glibenclamide, consistent with a mechanism of action involving ATP-dependent K+-channels.
Resumo:
We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10) or 20 µM and Emax of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 µM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM), a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM) or ODQ (1 µM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM), a VIP receptor antagonist, significantly inhibited (37 ± 7%) relaxation induced by gentisic acid, whereas CGRP (8-37) (0.1 µM), a CGRP antagonist, only slightly enhanced the action of gentisic acid. Taken together, these results provide functional evidence for the direct activation of voltage and large-conductance Ca+2-activated K+ channels, or indirect modulation of potassium channels induced by VIP receptors and accounts for the predominant relaxation response caused by gentisic acid in the guinea pig trachea.
Resumo:
Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.
Resumo:
Aldosterone concentrations vary in advanced chronic renal failure (CRF). The isozyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone and 11β-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR), in maintaining K+ homeostasis in 5/6 nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental CRF obtained by 5/6 nephrectomy (N = 9) and sham rats (N = 10) were maintained for 4 months. Systolic blood pressure and plasma creatinine (Pcr) concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR were evaluated before and after spironolactone administration (10 mg·kg-1·day-1 for 7 days) and 11β-HSD2 activity on renal microsomes was determined. Systolic blood pressure (means ± SEM; Sham = 105 ± 8 and CRF = 149 ± 10 mmHg) and Pcr (Sham = 0.42 ± 0.03 and CRF = 2.53 ± 0.26 mg/dL) were higher (P < 0.05) while GFR (Sham = 1.46 ± 0.26 and CRF = 0.61 ± 0.06 mL/min) was lower (P < 0.05) in CRF, and plasma aldosterone (Pald) was the same in the two groups. Urinary sodium and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potassium excretion was decreased in CRF rats (sham = 0.95 ± 0.090 (before) vs 0.89 ± 0.09 µEq/min (after) and CRF = 1.05 ± 0.05 (before) vs 0.37 ± 0.07 µEq/min (after); P < 0.05). 11β-HSD2 activity on renal microsomes was lower in CRF rats (sham = 0.807 ± 0.09 and CRF = 0.217 ± 0.07 nmol·min-1·mg protein-1; P < 0.05), although when normalized for mL GFR it was similar in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This adaptation may be mediated by renal 11β-HSD2 activity, which, when normalized for GFR, became similar to that of control rats, suggesting that mineralocorticoid receptors maintain their aldosterone selectivity.
Resumo:
Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (Ito) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM + TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg-1·day-1). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of Ito was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated Ito reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced Ito of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.
Resumo:
Low-sodium and high-potassium diets have been recommended as an adjunct to prevention and treatment of hypertension. Analysis of these nutrients in 24-h urine has been considered the reference method to estimate daily intake of these minerals. However, 24-h urine collection is difficult in epidemiological studies, since urine must be collected and stored in job environments. Therefore, strategies for shorter durations of urine collection at home have been proposed. We have previously reported that collecting urine during a 12-h period (overnight) is more feasible and that creatinine clearance correlated strongly with that detected in 24-h samples. In the present study, we collected urine for 24 h divided into two 12-h periods (from 7:00 am to 7:00 pm and from 7:00 pm to 7:00 am next day). A sample of 109 apparently healthy volunteers aged 30 to 74 years of both genders working in a University institution was investigated. Subjects with previous myocardial infarction, stroke, renal insufficiency, and pregnant women were not included. Significant (P < 0.001) Spearman correlation coefficients (r s) were found between the total amount of sodium and potassium excreted in the urine collected at night and in the 24-h period (r s = 0.76 and 0.74, respectively). Additionally, the 12-h sodium and potassium excretions (means ± SD, 95% confidence interval) corresponded to 47.3 ± 11.2%, 95%CI = 45.3-49.3, and 39.3 ± 4.6%, 95%CI = 37.3-41.3, respectively, of the 24-h excretion of these ions. Therefore, these findings support the assumption that 12-h urine collected at night can be used as a reliable tool to estimate 24-h intake/excretion of sodium and potassium.
Resumo:
Accumulating evidence has suggested that high salt and potassium might be associated with vascular function. The aim of this study was to investigate the effect of salt intake and potassium supplementation on brachial-ankle pulse wave velocity (PWV) in Chinese subjects. Forty-nine subjects (28-65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day NaCl), a high-salt diet for an additional 7 days (18.0 g/day NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day NaCl+4.5 g/day KCl). Brachial-ankle PWV was measured at baseline and on the last day of each intervention. Blood pressure levels were significantly increased from the low-salt to high-salt diet, and decreased from the high-salt diet to high-salt plus potassium supplementation. Baseline brachial-ankle PWV in salt-sensitive subjects was significantly higher than in salt-resistant subjects. There was no significant change in brachial-ankle PWV among the 3 intervention periods in salt-sensitive, salt-resistant, or total subjects. No significant correlations were found between brachial-ankle PWV and 24-h sodium and potassium excretions. Our study indicates that dietary salt intake and potassium supplementation, at least in the short term, had no significant effect on brachial-ankle PWV in Chinese subjects.
Resumo:
It is currently accepted that superoxide anion (O2•−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.
Resumo:
The elaboration of preserves through fruit processing is a promising alternative for their conservation. Such processing provides pleasant flavor due to the increase of sweetness and allows good conservation of the product for a prolonged time. Seeking quality and higher durability of fruit preserves, the purpose of this work was to evaluate the interference of potassium sorbate addition, and polypropylene, metallic and cellophane film packaging on the quality of guava (Psidium guajava L.) preserves during storage, through the physical, physiochemical and microbiological characteristics. The physical, physiochemical and microbiological analyses showed that the different types of packaging did not interfere in the stability of the guava preserves until the 5th month of storage - time being the factor that most influences the quality of the preserves when stored under temperature and humidity of 19.6 °C and 76.2%, respectively. The potassium sorbate caused an increase of the soluble solid levels and a decrease of the water activity. Regardless of the treatment, the preserves remained microbiologically stable during storage.
Resumo:
The use of unconventional sources of K for plants has been widely studied, but the effects of alternative materials on physiological seed quality are still relatively unknown. The objective of this study was to evaluate the physiological quality of soybean and wheat seeds after using different potassium sources in a crop succession. The experimental design was a completely randomized block with four replications. Treatments consisted of three K sources (KCl, alkaline rock and ground phonolite, with 58%, 11% and 8.42% of K2O, respectively) applied in four doses (0, 25, 50 and 100 kg K2O ha-1). Potassium doses were applied in soybean and their residual effects were evaluated on the following wheat crop. Soybean and wheat seeds were evaluated immediately after harvesting by tests for moisture content, seed weight, germination, first count, electrical conductivity, seedling length and seedling dry matter. Soybean plants fertilized with alternative sources of K produced heavier seeds with a lower coat permeability compared to KCl; the physiological quality of soybean seeds and the weight of wheat seeds increase due to higher K2O doses, independently of their source.