930 resultados para Post-processing
Resumo:
In this paper sequential importance sampling is used to assess the impact of observations on a ensemble prediction for the decadal path transitions of the Kuroshio Extension (KE). This particle filtering approach gives access to the probability density of the state vector, which allows us to determine the predictive power — an entropy based measure — of the ensemble prediction. The proposed set-up makes use of an ensemble that, at each time, samples the climatological probability distribution. Then, in a post-processing step, the impact of different sets of observations is measured by the increase in predictive power of the ensemble over the climatological signal during one-year. The method is applied in an identical-twin experiment for the Kuroshio Extension using a reduced-gravity shallow water model. We investigate the impact of assimilating velocity observations from different locations during the elongated and the contracted meandering state of the KE. Optimal observations location correspond to regions with strong potential vorticity gradients. For the elongated state the optimal location is in the first meander of the KE. During the contracted state of the KE it is located south of Japan, where the Kuroshio separates from the coast.
Resumo:
Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.
Resumo:
This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post- processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.
The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters
Resumo:
Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT space-based survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh et al. and a phenomenological correction was proposed. Here we tie the observed effect to a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.
Resumo:
Techniques devoted to generating triangular meshes from intensity images either take as input a segmented image or generate a mesh without distinguishing individual structures contained in the image. These facts may cause difficulties in using such techniques in some applications, such as numerical simulations. In this work we reformulate a previously developed technique for mesh generation from intensity images called Imesh. This reformulation makes Imesh more versatile due to an unified framework that allows an easy change of refinement metric, rendering it effective for constructing meshes for applications with varied requirements, such as numerical simulation and image modeling. Furthermore, a deeper study about the point insertion problem and the development of geometrical criterion for segmentation is also reported in this paper. Meshes with theoretical guarantee of quality can also be obtained for each individual image structure as a post-processing step, a characteristic not usually found in other methods. The tests demonstrate the flexibility and the effectiveness of the approach.
Resumo:
The analysis of histological sections has long been a valuable tool in the pathological studies. The interpretation of tissue conditions, however, relies directly on visual evaluation of tissue slides, which may be difficult to interpret because of poor contrast or poor color differentiation. The Chromatic Contrast Visualization System (CCV) combines an optical microscope with electronically controlled light-emitting diodes (LEDs) in order to generate adjustable intensities of RGB channels for sample illumination. While most image enhancement techniques rely on software post-processing of an image acquired under standard illumination conditions, CCV produces real-time variations in the color composition of the light source itself. The possibility of covering the entire RGB chromatic range, combined with the optical properties of the different tissues, allows for a substantial enhancement in image details. Traditional image acquisition methods do not exploit these visual enhancements which results in poorer visual distinction among tissue structures. Photodynamic therapy (PDT) procedures are of increasing interest in the treatment of several forms of cancer. This study uses histological slides of rat liver samples that were induced to necrosis after being exposed to PDT. Results show that visualization of tissue structures could be improved by changing colors and intensities of the microscope light source. PDT-necrosed tissue samples are better differentiated when illuminated with different color wavelengths, leading to an improved differentiation of cells in the necrosis area. Due to the potential benefits it can bring to interpretation and diagnosis, further research in this field could make CCV an attractive technique for medical applications.
Resumo:
In this thesis, a new algorithm has been proposed to segment the foreground of the fingerprint from the image under consideration. The algorithm uses three features, mean, variance and coherence. Based on these features, a rule system is built to help the algorithm to efficiently segment the image. In addition, the proposed algorithm combine split and merge with modified Otsu. Both enhancements techniques such as Gaussian filter and histogram equalization are applied to enhance and improve the quality of the image. Finally, a post processing technique is implemented to counter the undesirable effect in the segmented image. Fingerprint recognition system is one of the oldest recognition systems in biometrics techniques. Everyone have a unique and unchangeable fingerprint. Based on this uniqueness and distinctness, fingerprint identification has been used in many applications for a long period. A fingerprint image is a pattern which consists of two regions, foreground and background. The foreground contains all important information needed in the automatic fingerprint recognition systems. However, the background is a noisy region that contributes to the extraction of false minutiae in the system. To avoid the extraction of false minutiae, there are many steps which should be followed such as preprocessing and enhancement. One of these steps is the transformation of the fingerprint image from gray-scale image to black and white image. This transformation is called segmentation or binarization. The aim for fingerprint segmentation is to separate the foreground from the background. Due to the nature of fingerprint image, the segmentation becomes an important and challenging task. The proposed algorithm is applied on FVC2000 database. Manual examinations from human experts show that the proposed algorithm provides an efficient segmentation results. These improved results are demonstrating in diverse experiments.
Resumo:
Distributed energy and water balance models require time-series surfaces of the meteorological variables involved in hydrological processes. Most of the hydrological GIS-based models apply simple interpolation techniques to extrapolate the point scale values registered at weather stations at a watershed scale. In mountainous areas, where the monitoring network ineffectively covers the complex terrain heterogeneity, simple geostatistical methods for spatial interpolation are not always representative enough, and algorithms that explicitly or implicitly account for the features creating strong local gradients in the meteorological variables must be applied. Originally developed as a meteorological pre-processing tool for a complete hydrological model (WiMMed), MeteoMap has become an independent software. The individual interpolation algorithms used to approximate the spatial distribution of each meteorological variable were carefully selected taking into account both, the specific variable being mapped, and the common lack of input data from Mediterranean mountainous areas. They include corrections with height for both rainfall and temperature (Herrero et al., 2007), and topographic corrections for solar radiation (Aguilar et al., 2010). MeteoMap is a GIS-based freeware upon registration. Input data include weather station records and topographic data and the output consists of tables and maps of the meteorological variables at hourly, daily, predefined rainfall event duration or annual scales. It offers its own pre and post-processing tools, including video outlook, map printing and the possibility of exporting the maps to images or ASCII ArcGIS formats. This study presents the friendly user interface of the software and shows some case studies with applications to hydrological modeling.
Resumo:
This article presents a detailed study of the application of different additive manufacturing technologies (sintering process, three-dimensional printing, extrusion and stereolithographic process), in the design process of a complex geometry model and its moving parts. The fabrication sequence was evaluated in terms of pre-processing conditions (model generation and model STL SLI), generation strategy and physical model post-processing operations. Dimensional verification of the obtained models was undertook by projecting structured light (optical scan), a relatively new technology of main importance for metrology and reverse engineering. Studies were done in certain manufacturing time and production costs, which allowed the definition of an more comprehensive evaluation matrix of additive technologies.
Resumo:
Self-organizing maps (SOM) are artificial neural networks widely used in the data mining field, mainly because they constitute a dimensionality reduction technique given the fixed grid of neurons associated with the network. In order to properly the partition and visualize the SOM network, the various methods available in the literature must be applied in a post-processing stage, that consists of inferring, through its neurons, relevant characteristics of the data set. In general, such processing applied to the network neurons, instead of the entire database, reduces the computational costs due to vector quantization. This work proposes a post-processing of the SOM neurons in the input and output spaces, combining visualization techniques with algorithms based on gravitational forces and the search for the shortest path with the greatest reward. Such methods take into account the connection strength between neighbouring neurons and characteristics of pattern density and distances among neurons, both associated with the position that the neurons occupy in the data space after training the network. Thus, the goal consists of defining more clearly the arrangement of the clusters present in the data. Experiments were carried out so as to evaluate the proposed methods using various artificially generated data sets, as well as real world data sets. The results obtained were compared with those from a number of well-known methods existent in the literature
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SAFT techniques are based on the sequential activation, in emission and reception, of the array elements and the post-processing of all the received signals to compose the image. Thus, the image generation can be divided into two stages: (1) the excitation and acquisition stage, where the signals received by each element or group of elements are stored; and (2) the beamforming stage, where the signals are combined together to obtain the image pixels. The use of Graphics Processing Units (GPUs), which are programmable devices with a high level of parallelism, can accelerate the computations of the beamforming process, that usually includes different functions such as dynamic focusing, band-pass filtering, spatial filtering or envelope detection. This work shows that using GPU technology can accelerate, in more than one order of magnitude with respect to CPU implementations, the beamforming and post-processing algorithms in SAFT imaging. ©2009 IEEE.
Resumo:
Although association mining has been highlighted in the last years, the huge number of rules that are generated hamper its use. To overcome this problem, many post-processing approaches were suggested, such as clustering, which organizes the rules in groups that contain, somehow, similar knowledge. Nevertheless, clustering can aid the user only if good descriptors be associated with each group. This is a relevant issue, since the labels will provide to the user a view of the topics to be explored, helping to guide its search. This is interesting, for example, when the user doesn't have, a priori, an idea where to start. Thus, the analysis of different labeling methods for association rule clustering is important. Considering the exposed arguments, this paper analyzes some labeling methods through two measures that are proposed. One of them, Precision, measures how much the methods can find labels that represent as accurately as possible the rules contained in its group and Repetition Frequency determines how the labels are distributed along the clusters. As a result, it was possible to identify the methods and the domain organizations with the best performances that can be applied in clusters of association rules.
Resumo:
The Brazilian Network for Continuous Monitoring of GNSS - RBMC is a national network of continuously operating reference GNSS stations. Since its establishment in December of 1996, it has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. In order to provide better services for RBMC, the Brazilian Institute of Geography and Statistics - IBGE and the National Institute of Colonization and Land Reform - INCRA are both partners involved in the National Geospatial Framework Project - PIGN. This paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. These steps involve the installation of new equipment, provide real time data from a group of core stations and compute real-time DGPS corrections, based on CDGPS (The real-time Canada-Wide DGPS Service) (The Real-Time Canada-Wide DGPS Service. http://www.cdgps.com/ 2009a). In addition to this, a post-mission Precise Point Positioning (PPP) service has been established based on the current Geodetic Survey Division of NRCan (CSRS-PPP) service. This service is operational since April 2009 and is in large use in the country. All activities mentioned before are based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. This infrastructure of 66 GNSS stations, the real time, post processing services and the potentiality of providing Wide Area DGPS corrections in the future show that the RBMC system is comparable to those available in USA and Europe. © Springer-Verlag Berlin Heidelberg 2012.