916 resultados para Porous materials Permeability Computer simulation
Resumo:
The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.
Simulação numérica da convecção mista em cavidade preenchida com meio poroso heterogêneo e homogêneo
Resumo:
In this work is presented mixed convection heat transfer inside a lid-driven cavity heated from below and filled with heterogeneous and homogeneous porous medium. In the heterogeneous approach, the solid domain is represented by heat conductive equally spaced blocks; the fluid phase surrounds the blocks being limited by the cavity walls. The homogeneous or pore-continuum approach is characterized by the cavity porosity and permeability. Generalized mass, momentum and energy conservation equations are obtained in dimensionless form to represent both the continuum and the pore-continuum models. The numerical solution is obtained via the finite volume method. QUICK interpolation scheme is set for numerical treatment of the advection terms and SIMPLE algorithm is applied for pressure-velocity coupling. Aiming the laminar regime, the flow parameters are kept in the range of 102≤Re≤103 and 103≤Ra≤106 for both the heterogeneous and homogeneous approaches. In the tested configurations for the continuous model, 9, 16, 36, and 64 blocks are considered for each combination of Re and Ra being the microscopic porosity set as constant φ=0,64 . For the pore-continuum model the Darcy number (Da) is set according to the number of blocks in the heterogeneous cavity and the φ. Numerical results of the comparative study between the microscopic and macroscopic approaches are presented. As a result, average Nusselt number equations for the continuum and the pore continuum models as a function of Ra and Re are obtained.
Resumo:
Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media.
Resumo:
The finite element method is used to simulate coupled problems, which describe the related physical and chemical processes of ore body formation and mineralization, in geological and geochemical systems. The main purpose of this paper is to illustrate some simulation results for different types of modelling problems in pore-fluid saturated rock masses. The aims of the simulation results presented in this paper are: (1) getting a better understanding of the processes and mechanisms of ore body formation and mineralization in the upper crust of the Earth; (2) demonstrating the usefulness and applicability of the finite element method in dealing with a wide range of coupled problems in geological and geochemical systems; (3) qualitatively establishing a set of showcase problems, against which any numerical method and computer package can be reasonably validated. (C) 2002 Published by Elsevier Science B.V.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Introduction: Streptomycin, as other aminoglycosides, exhibits concentration-dependent bacterial killing but has a narrow therapeutic window. It is primarily eliminated unchanged by the kidneys. Data and dosing information to achieve a safe regimen in patients with chronic renal failure undergoing hemodialysis (HD) are scarce. Although main adverse reactions are related to prolonged, elevated serum concentrations, literature recommendation is to administer streptomycin after each HD. Patients (or Materials) and Methods: We report the case of a patient with end-stage renal failure, undergoing HD, who was successfully treated with streptomycin for gentamicin-resistant Enterococcus faecalis bacteremia with prosthetic arteriovenous fistula infection. Streptomycin was administered intravenously 7.5 mg/kg, 3 hours before each dialysis (3 times a week) during 6 weeks in combination with amoxicillin. Streptomycin plasma levels were monitored with repeated blood sampling before, after, and between HD sessions. A 2-compartment model was used to reconstruct the concentration time profile over days on and off HD. Results: Streptomycin trough plasma-concentration was 2.8 mg/L. It peaked to 21.4 mg/L 30 minutes after intravenous administration, decreased to 18.2 mg/L immediately before HD, and dropped to 4.5 mg/L at the end of a 4-hour HD session. Plasma level increased again to 5.7 mg/L 2 hours after the end of HD and was 2.8 mg/L 48 hours later, before the next administration and HD. The pharmacokinetics of streptomycin was best described with a 2-compartment model. The computer simulation fitted fairly well to the observed concentrations during or between HD sessions. Redistribution between the 2 compartments after the end of HD reproduced the rebound of plasma concentrations after HD. No significant toxicity was observed during treatment. The outcome of the infection was favorable, and no sign of relapse was observed after a follow-up of 3 months. Conclusion: Streptomycin administration of 7.5 mg/kg 3 hours before HD sessions in a patient with end-stage renal failure resulted in an effective and safe dosing regimen. Monitoring plasma levels along with pharmacokinetic simulation document the suitability of this dosing scheme, which should replace current dosage recommendations for streptomycin in HD.
Resumo:
Fluid flow behaviour in porous media is a conundrum. Therefore, this research is focused on filtration-volumetric characterisation of fractured-carbonate sediments, coupled with their proper simulation. For this reason, at laboratory rock properties such as pore volume, permeability and porosity are measured, later phase permeabilities and oil recovery in function of flow rate are assessed. Furthermore, the rheological properties of three oils are measured and analysed. Finally based on rock and fluid properties, a model using COMSOL Multiphysics is built in order to compare the experimental and simulated results. The rock analyses show linear relation between flow rate and differential pressure, from which phase permeabilities and pressure gradient are determined, eventually the oil recovery under low and high flow rate is established. In addition, the oils reveal thixotropic properties as well as non-Newtonian behaviour described by Bingham model, consequently Carreau viscosity model for the used oil is given. Given these points, the model for oil and water is built in COMSOL Multiphysics, whereupon successfully the reciprocity between experimental and simulated results is analysed and compared. Finally, a two-phase displacement model is elaborated.
Resumo:
Este proyecto de investigación busca usar un sistema de cómputo basado en modelación por agentes para medir la percepción de marca de una organización en una población heterogénea. Se espera proporcionar información que permita dar soluciones a una organización acerca del comportamiento de sus consumidores y la asociada percepción de marca. El propósito de este sistema es el de modelar el proceso de percepción-razonamiento-acción para simular un proceso de razonamiento como el resultado de una acumulación de percepciones que resultan en las acciones del consumidor. Este resultado definirá la aceptación de marca o el rechazo del consumidor hacia la empresa. Se realizó un proceso de recolección información acerca de una organización específica en el campo de marketing. Después de compilar y procesar la información obtenida de la empresa, el análisis de la percepción de marca es aplicado mediante procesos de simulación. Los resultados del experimento son emitidos a la organización mediante un informe basado en conclusiones y recomendaciones a nivel de marketing para mejorar la percepción de marca por parte de los consumidores.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
Er3+:LiYF4 single crystal has been studied by absorption and fluorescence spectroscopy in the IR-visible-UV (0-44000 cm-1) region from 4.2 K to room temperature. Polarized spectra were recorded in order to assign numerous Stark levels of electronic transitions mentioned but not attributed before in the related literature and to discuss the irreducible representations (irreps) of the 4I15/2 sublevels. A parametric hamiltonian, including free ion (Eν, α, β, γ, Tλ, ζ, Mk and Pi) and crystal field parameters (B2 0, B4 0, B4 4, B6 0 and B6 4) in an approximate D2d symmetry for the rare earth site in this scheelite type structure, was used to simulate 109 energy positions of the Er ion with a r.m.s. standard deviation of 14.6 cm-1. A comparison with previously published results for Nd3+ in the same matrix is done. © 1998 Elsevier Science S.A.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
Nowadays computer simulation is used in various fields, particularly in laboratories where it is used for the exploration data which are sometimes experimentally inaccessible. In less developed countries where there is a need for up to date laboratories for the realization of practical lessons in chemistry, especially in secondary schools and some higher institutions of learning, it may permit learners to carryout experiments such as titrations without the use of laboratory materials and equipments. Computer simulations may also permit teachers to better explain the realities of practical lessons, given that computers have now become very accessible and less expensive compared to the acquisition of laboratory materials and equipments. This work is aimed at coming out with a virtual laboratory that shall permit the simulation of an acid-base titration and an oxidation-reduction titration with the use of synthetic images. To this effect, an appropriate numerical method was used to obtain appropriate organigram, which were further transcribed into source codes with the help of a programming language so as to come out with the software.
Resumo:
With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2µm to 6µm have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (~200 degrees C) and thick/soft bonding layers (~6µm) have been achieved by In-Au bondi ng technology, which is able to compensate the potentially rough surface on the porous silicon sample without introducing significant thermal stress. The application of the porous silicon material in micro systems has been demonstrated in a micro gas chromatograph system by two indispensable components: an integrated vapor source and an inlet filter, wherein porous silicon performs the basic functions of porous media: wicking and filtration. By utilizing a macro porous silicon wick, the calibration vapor source was able to produce a uniform and repeatable vapor generation for n-decane with less than a 0.1% variation in 9 hours, and less than a 0.5% variation in rate over 7 days. With engineered porous silicon membranes the inlet filter was able to show a depth filtration with nearly 100% collection efficiency for particles larger than 0.3µm in diameter, a low pressure-drop of 523Pa at 20sccm flow rate, and a filter capacity of 500µg/cm2.
Resumo:
N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies.
Resumo:
A Monte Carlo computer simulation technique, in which a continuum system is modeled employing a discrete lattice, has been applied to the problem of recrystallization. Primary recrystallization is modeled under conditions where the degree of stored energy is varied and nucleation occurs homogeneously (without regard for position in the microstructure). The nucleation rate is chosen as site saturated. Temporal evolution of the simulated microstructures is analyzed to provide the time dependence of the recrystallized volume fraction and grain sizes. The recrystallized volume fraction shows sigmoidal variations with time. The data are approximately fit by the Johnson-Mehl-Avrami equation with the expected exponents, however significant deviations are observed for both small and large recrystallized volume fractions. Under constant rate nucleation conditions, the propensity for irregular grain shapes is decreased and the density of two sided grains increases.