885 resultados para Porous layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In the Rd1 and Rd10 mouse models of retinitis pigmentosa, a mutation in the Pde6ß gene leads to the rapid loss of photoreceptors. As in several neurodegenerative diseases, Rd1 and Rd10 photoreceptors re-express cell cycle proteins prior to death. Bmi1 regulates cell cycle progression through inhibition of CDK inhibitors, and its deletion efficiently rescues the Rd1 retinal degeneration. The present study evaluates the effects of Bmi1 loss in photoreceptors and Müller glia, since in lower vertebrates, these cells respond to retinal injury through dedifferentiation and regeneration of retinal cells. Methods: Cell death and Müller cell activation were analyzed by immunostaining of wild-type, Rd1 and Rd1;Bmi1-/- eye sections during retinal degeneration, between P10 and P20. Lineage tracing experiments use the GFAP-Cre mouse (JAX) to target Müller cells. Results: In Rd1 retinal explants, inhibition of CDKs reduces the amount of dying cells. In vivo, Bmi1 deletion reduces CDK4 expression and cell death in the P15 Rd1;Bmi1-/- retina, although cGMP accumulation and TUNEL staining are detected at the onset of retinal degeneration (P12). This suggests that another process acts in parallel to overcome the initial loss of Rd1;Bmi1-/- photoreceptors. We demonstrate here that Bmi1 loss in the Rd1 retina enhances the activation of Müller glia by downregulation of p27Kip1, that these cells migrate toward the ONL, and that some cells express the retinal progenitor marker Pax6 at the inner part of the ONL. These events are also observed, but to a lesser extent, in Rd1 and Rd10 retinas. At P12, EdU incorporation shows proliferating cells with atypical elongated nuclei at the inner border of the Rd1;Bmi1-/- ONL. Lineage tracing targeting Müller cells is in process and will determine the implication of this cell population in the maintenance of the Rd1;Bmi1-/- ONL thickness and whether downregulation of Bmi1 in Rd10 Müller cells equally stimulates their activation. Conclusions: Our results show a dual role of Bmi1 deletion in the rescue of photoreceptors in the Rd1;Bmi1-/- retina. Indeed, the loss of Bmi1 reduces Rd1 retinal degeneration, and as well, enhances the Müller glia activation. In addition, the emergence of cells expressing a retinal progenitor marker in the ONL suggests Bmi1 as a blockade to the regeneration of retinal cells in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of large oral mucosa defects is often challenging, since the shortage of healthy oral mucosa to replace the excised tissues is very common. In this context, tissue engineering techniques may provide a source of autologous tissues available for transplant in these patients. In this work, we developed a new model of artificial oral mucosa generated by tissue engineering using a fibrin-agarose scaffold. For that purpose, we generated primary cultures of human oral mucosa fibroblasts and keratinocytes from small biopsies of normal oral mucosa using enzymatic treatments. Then we determined the viability of the cultured cells by electron probe quantitative X-ray microanalysis, and we demonstrated that most of the cells in the primary cultures were alive and had high K/Na ratios. Once cell viability was determined, we used the cultured fibroblasts and keratinocytes to develop an artificial oral mucosa construct by using a fibrin-agarose extracellular matrix and a sequential culture technique using porous culture inserts. Histological analysis of the artificial tissues showed high similarities with normal oral mucosa controls. The epithelium of the oral substitutes had several layers, with desmosomes and apical microvilli and microplicae. Both the controls and the oral mucosa substitutes showed high suprabasal expression of cytokeratin 13 and low expression of cytokeratin 10. All these results suggest that our model of oral mucosa using fibrin-agarose scaffolds show several similarities with native human oral mucosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been long stated that there are profound analogies between fracture experiments and earthquakes; however, few works attempt a complete characterization of the parallelisms between these so separate phenomena. We study the Acoustic Emission events produced during the compression of Vycor (SiO&sub&2&/sub&). The Gutenberg-Richter law, the modified Omori's law, and the law of aftershock productivity hold for a minimum of 5 decades, are independent of the compression rate, and keep stationary for all the duration of the experiments. The waiting-time distribution fulfills a unified scaling law with a power-law exponent close to 2.45 for long times, which is explained in terms of the temporal variations of the activity rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se, should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous rock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to evaluate the performance of the product Ultracote® (a polymer based additive produced by Ultrapave, a division of Goodyear) as an aggregate pre-treatment for the reduction of asphalt binder absorption in hot mix asphalt (HMA). The product was tested with a paving project in Louisa county, Iowa with aggregate that had historically shown very high asphalt binder absorption. Results of the testing did not provide any evidence of reduction in binder absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We implemented Biot-type porous wave equations in a pseudo-spectral numerical modeling algorithm for the simulation of Stoneley waves in porous media. Fourier and Chebyshev methods are used to compute the spatial derivatives along the horizontal and vertical directions, respectively. To prevent from overly short time steps due to the small grid spacing at the top and bottom of the model as a consequence of the Chebyshev operator, the mesh is stretched in the vertical direction. As a large benefit, the Chebyshev operator allows for an explicit treatment of interfaces. Boundary conditions can be implemented with a characteristics approach. The characteristic variables are evaluated at zero viscosity. We use this approach to model seismic wave propagation at the interface between a fluid and a porous medium. Each medium is represented by a different mesh and the two meshes are connected through the above described characteristics domain-decomposition method. We show an experiment for sealed pore boundary conditions, where we first compare the numerical solution to an analytical solution. We then show the influence of heterogeneity and viscosity of the pore fluid on the propagation of the Stoneley wave and surface waves in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ1-42, okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica speleothems take differenr forms such as cylindrical stems growing from either the floor or the ceiling in granitic caves. Mineralogically they are opal-A and accumulate in successive layers with a whiskery druse tip formed by gypsum crystals. Initially they are porous but progressively become infilled by opal precipitation. This results in formation of solid speleothems. their size is only a few millimetres long. Bacterial activity accelerate quartz dissolution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cork is the bark of the cork oak tree (Quercus suber L), a renewable and biodegradable raw bioresource concentrated mainly in the Mediterranean region. Development of its potential uses as a biosorbent will require the investigation of its chemical composition; such information can be of help to understand its interactions with organic pollutants. The present study investigates the summative chemical composition of three bark layers (back, cork, and belly) of five Spanish cork samples and one cork sample from Portugal. Suberin was the main component in all the samples (21.1 to 53.1%), followed by lignin (14.8 to 31%), holocellulose (2.3 to 33.6%), extractives (7.3 to 20.4%), and ash (0.4 to 3.3%). The Kruskal-Wallis test was used to determine whether the variations in chemical composition with respect to the production area and bark layers were significant. The results indicate that, with respect to the bark layer, significant differences were found only for suberin and holocellulose contents: they were higher in the belly and cork than in the back. Based on the results presented, cork is a material with a lot of potential because of its heterogeneity in chemical composition