940 resultados para Population genetic strcuture
Resumo:
1. Prochilodus lineatus (Prochilodontidae, Characiformes) is a migratory species of great economic importance both in fisheries and aquaculture that is found throughout the Jacui, Paraiba do Sul, Parana, Paraguay and Uruguay river basins in South America. Earlier population studies of P. lineatus in the rio Grande basin (Parana basin) indicated the existence of a single population; however, the range of this species has been fragmented by the construction of several dams. Such dams modified the environmental conditions and could have constrained the reproductive migration of P. lineatus, possibly leading to changes in the population genetic structure. 2. In order to evaluate how genetic diversity is allocated in the rio Grande basin, 141 specimens of P. lineatus from eight collection sites were analysed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with 15 restriction enzymes. 3. Forty-six haplotypes were detected, and 70% of them are restricted. The mean genetic variability indexes (h = 0.7721 and pi = 1.6%) were similar to those found in natural populations with a large effective size. Fst and Exact Test values indicated a lack of structuring among the samples, and the model of isolation by distance was tested and rejected. 4. The haplotype network indicated that this population of P. lineatus has been maintained as a single variable stock with some differences in the genetic composition (haplotypes) between samples. Indications of population expansion were detected, and this finding was supported by neutrality tests and mismatch distribution analyses. 5. The present study focused on regions between dams to serve as a parameter for further evaluations of genetic variability and the putative impact of dams and repopulation programmes in natural populations of P. lineatus. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fetal hemoglobin (Hb F), formed by two alpha globin chains (α) and two gamma chains (γ) (α2 γ2), has reduced expression in adults, ranging from 0 to 1% of total hemoglobin. Increased levels of Hb F are due to mutations in the β-globin family, which cause hereditary persistence of fetal hemoglobin (HPFH) and delta-beta thalassemia (δβ-thalassemia).The control of the production takes place by the regulatory region and regions outside the β-globin family, among them 2q16, 6q23, 8q, and Xp22.2.The aims of this study were to determine the presence and frequency of two mutations for δβ-thalassemia, the XmnI polymorphism and β-globin haplotypes in healthy individuals with increased Hb F in the State of São Paulo. We analyzed 60 samples of peripheral blood of healthy adults, without complaints of anemia. The samples were separated into two groups according to Hb F level: group I - 34 samples with Hb F ranging from 2 to 15% and group II - 26 samples with Hb F over 15%. In relation to the polymorphisms examined, we found three heterozygous individuals (5%) for Spanish δβ-thalassemia, belonging to group I, whose Hb F levels were within the normal range.The Sicilian δβ-thalassemia mutation was not found, indicating the need to study other polymorphisms related to the increase of Hb F in adult life.The frequency of XmnI polymorphism was 33.3% and the mean Hb F levels were 15.48 ± 11.69%.The frequency observed in our study for this polymorphic site is higher than that found in the literature for healthy subjects.This polymorphism was more prevalent in individuals with Hb F levels below 15%. For four samples positive for this polymorphism, the Hb F levels were explained by the presence of HPFH and Spanish δβ-thalassemia mutations, so that the presence of the XmnI polymorphic site was not a determinant in the overexpression of γ-globin genes. Regarding β-globin haplotypes, 18 alleles and 27 distinct genotypic patterns were found.The pattern Atp1/Atp2 was the mostfrequent genotype (13.72%).Of the 18 alleles, 13 showed atypical patterns.The results show that the haplotype V was the most frequent (27.45%), followed by atypical Atp2 (13.72%) and Atp1 (11.76%), and that there was a higher correlation with the presence of HPFH and XmnI polymorphism.The high frequency of haplotype V in our samples and high frequency of atypical haplotypes may reflect a high rate of miscegenation in this population, suggesting an ethnic characteristic for the Brazilian population, requiring the evaluation of population genetic markers to corroborate this hypothesis. © FUNPEC-RP.
Resumo:
The biological characteristics of Aedes aegypti (Diptera, Culicidae), which is a vector of dengue and yellow fever, make this organism a good model for studying population structure and the events that may influence it under the effect of human activity. We assessed the genetic variability of five A. aegypti populations using RAPD-PCR technique and six primers. Four populations were from Brazil and one was from the USA. A total of 165 polymorphic DNA loci were generated. Considering the six primers and the five populations, the mean value of inter-population genetic diversity (Gst) was 0.277, which is considered high according to the Wright classification. However, pairwise comparisons of the populations gave variable Gst values ranging from 0.044 to 0.289. This variation followed the population's geographic distance to some extent but was also influenced by human activity. The lowest Gst values were obtained in the comparison of populations from cities with intensive commercial and medical contacts. These mosquito populations were previously classified as insecticide resistant, susceptible, or with decreased susceptibility; this parameter apparently had an effect on the Gst values obtained in the pairwise comparisons. ©FUNPEC-RP.
Resumo:
Distinct genetic structure in populations of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Green lacewings are generalist predators, and the species Chrysoperla externa presents a great potential for use in biological control of agricultural pests due to its high predation and reproduction capacities, as well as its easy mass rearing in the laboratory. The adaptive success of a species is related to genetic variability, so that population genetic studies are extremely important in order to maximize success of the biological control. Thus, the present study used nuclear (Inter Simple Sequence Repeat - ISSR) and mitochondrial (Cytochrome Oxidase I - COI) molecular markers to estimate the genetic variability of 12 populations in the São Paulo State, Brazil, as well as the genetic relationships between populations. High levels of genetic diversity were observed for both markers, and the highest values of genetic diversity appear associated with municipalities that have the greatest areas of native vegetation. There was high haplotype sharing, and there was no correlation between the markers and the geographic distribution of the populations. The AMOVA indicated absence of genetic structure for the COI gene, suggesting that the sampled areas formed a single population unit. However, the great genetic differentiation among populations showed by ISSR demonstrates that these have been under differentiation after their expansion or may also reflect distinct dispersal behavior between males and females.
Resumo:
The objective of this study was to evaluate the effective number of founders and ancestors, generation intervals and completeness of pedigree in Jaffarabadi breed buffaloes raised in Brazil. Pedigree records of 1,272 animals born from 1966 were used. The parameters were estimated using ENDOG, computational population genetic software. The obtained value for completeness of pedigree was 99.5, 50.9, and 20.5 for, the first, second and third generations, respectively. Generation interval estimates expressed in years and considering different pathways were 12.28 +/- 6.90 (sire-son), 11.55 +/- 6.07 (sire-daughter), 8.20 +/- 2.63 (dam-son) and 8.794 +/-.33 (dam-daughter). The overall average generation interval was 10.17 +/- 5.43 years. The number of founders, equivalent founders and ancestor animals that contributed for the genetic diversity in the reference population (1059) were 136, 130 and 134, respectively. Effective number of founder (f(e)=8) and ancestors (f(a)=7) were small, and the calculated expected inbreeding increase per generation was 4.99%. Four ancestors explained 50% of the genetic variability in the population and the major ancestor contributed with approximately 33% of the total population genetic variation. The genetic diversity within the current population is low as a consequence of a reduced number of ancestors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.
Resumo:
The major Neotropical malaria vector, Anopheles darlingi, was reintroduced into the Iquitos, Loreto, Peru area during the early 1990s, where it displaced other anophelines and caused a major malaria epidemic. Since then, case numbers in Loreto have fluctuated, but annual increases have been reported since 2012. The population genetic structure of An. darlingi sampled before and after the introduction of long-lasting insecticidal nets (LLINs) was investigated to test the hypothesis of temporal population change (2006 vs. 2012). Current samples of An. darlingi were used to test the hypothesis of ecological adaptation to human modified (highway) compared with wild (riverine) habitat, linked to forest cover. In total, 693 An. darlingi from nine localities in Loreto, Peru area were genotyped using 13 microsatellite loci. To test the hypothesis of habitat differentiation in An. darlingi biting time patterns, HBR and EIR, four collections of An. darlingi from five localities (two riverine and three highway) were analysed. Analyses of microsatellite loci from seven (2006) and nine settlements (2012-2014) in the Iquitos area detected two distinctive populations with little overlap, although it is unclear whether this population replacement event is associated with LLIN distribution or climate. Within the 2012-2014 population two admixed subpopulations, A and B, were differentiated by habitat, with B significantly overrepresented in highway, and both in near-equal proportions in riverine. Both subpopulations had a signature of expansion and there was moderate genetic differentiation between them. Habitat and forest cover level had significant effects on HBR, such that Plasmodium transmission risk, as measured by EIR, in peridomestic riverine settlements was threefold higher than in peridomestic highway settlements. HBR was directly associated with available host biomass rather than forest cover. A population replacement event occurred between 2006 and 2012-2014, concurrently with LLIN distribution and a moderate El Niño event, and prior to an increase in malaria incidence. The likely drivers of this replacement cannot be determined with current data. The present-day An. darlingi population is composed of two highly admixed subpopulations, which appear to be in an early stage of differentiation, triggered by anthropogenic alterations to local habitat.
Resumo:
The Black Sea is a semi-enclosed body of water that differs from the adjacent Mediterranean Sea in terms of its biodiversity, oceanographical and ecological characteristics. There is growing international concern about pollution in the Black Sea and other anthropogenic threats to its fauna. The bottlenose dolphin (Tursiops truncatus) is one of three species of cetaceans living in the Azov-Black Sea basin. Despite considerable research on bottlenose dolphins elsewhere, the extent of human impacts on the Black Sea populations is unknown. Previous attempts to award special conservation status to Black Sea cetaceans have failed specifically because policy makers have viewed their ecological and evolutionary uniqueness as equivocal. This study assessed divergence between Black Sea, Mediterranean Sea and Atlantic Ocean bottlenose dolphins for 26 cranial measurements (n = 75 adult bottlenose dolphin skulls) and mitochondrial DNA (n = 99 individuals). Black Sea bottlenose dolphins are smaller than those in the Mediterranean, and possess a uniquely shaped skull. As in a previous study, we found the Black Sea population to be genetically distinct, with relatively low levels of mtDNA diversity. Population genetic models suggest that Black Sea bottlenose dolphins have so little gene flow with the Mediterranean due to historical isolation that they should be managed separately.
Resumo:
Intra-and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton-and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's F-S parameters. In addition, high values of haplotype diversity ((H) over cap) and low values of nucleotide diversity (pi), combined with a high number of low frequency haplotypes and values of theta(pi)<theta(W), suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.