978 resultados para Polymerization.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N,N-bidentate ligand 2-{(N-2,6-diisopropylphenyl)iminomethyl)}pyrrole (L-1) and the N,N,P-tridentate ligand 2-{(N-2-diphenylphosphinophenyl)iminomethyl)}pyrrole (L-2) have been prepared. Their reactions with homoleptic yttrium tris(alkyl) compound Y(CH2SiMe3)(3)(THF)(2) have been investigated. Treatment of Y(CH2SiMe3)(3)(THF)(2) with 1 equiv of L-1 generated a THF-solvated bimetallic (pyrrolylaldiminato)yttrium mono(alkyl) complex (1) of central symmetry. In this process, L-1 is deprotonated by metal alkyl and its imino CN group is reduced to C-N by intramolecular alkylation, generating dianionic species that bridge two yttrium alkyl units in a unique eta(5)/eta(1):kappa(1) mode. The pyrrolyl ring behaves as a heterocyclopentadienyl ligand. Reaction of Y(CH2SiMe3)(3)(THF)(2) with 2 equiv of L-1 afforded the monomeric bis(pyrrolylaldiminato)yttrium mono(alkyl) complex (2), selectively. Amination of 2 with 2,6-diisopropylaniline gave the corresponding yttrium amido complex (3). In 3 the pyrrolide ligand is monoanionic and bonds to the yttrium atom in a eta(1):kappa(1) mode. The homoleptic tris(eta(1):kappa(1)-pyrrolylaldiminato)yttrium complex (4) was isolated when the molar ratio of L-1 to Y(CH2SiMe3)(3)(THF)(2) increases to 3:1. Reaction of L-2 with equimolar Y(CH2SiMe3)(3)(THF)(2) afforded an asymmetric binuclear complex (5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of yttrium tris(alkyl)s, Y(CH2SiMe3)(3)(THF)(2), by equimolar H(C5Me4)SiMe3(HCp') and indene (Ind-H) afforded (eta(5)-Cp')Y(CH2SiMe3)(2)(THF) (1) and (eta(5)-Ind)Y(CH2SiMe3)(2)(THF) (2) via alkane elimination, respectively. Complex 1 reacted with methoxyamino phenols, 4,6-(CH3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2-OH (HL1) and 4,6-(CMe3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2OH (HL2) gave mixed ligands supported alkyl complexes [(eta(5)-Cp')(L)]Y(CH2SiMe3) (3: L = L-1; 4: L = L-2). Whilst, complex 2 was treated with HL2 to yield [(eta(5)-Ind)(L-2)]Y(CH2SiMe3) (5). The molecular structures of 3 and 5 were confirmed by X-ray diffraction to be mono(alkyl)s of THF-free, adopting pyramidal and tetragonal-bipyramidal geometry, respectively. Complexes 3 and 5 were high active initiators for the ring-opening polymerization Of L-lactide to give isotactic polylactide with high molecular weight and narrow to moderate polydispersity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)(2) (HL1) and Lu(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h generated mono(alkyl) complex (L-1)(2)Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)(2) (HL2) with Lu(CH2SiMe3)(3)(THF)(2) afforded (L-2)(2)Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L-2)(3)Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)(2) (HL3) swiftly reacted with Ln(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L(3)Ln(CH2SiMC3)(2)(THF)(n) (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)(4)], was able to catalyze the polymerization of ethylene to afford linear polyethylene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methoxy-modified beta-diimines HL1 and HL2 reacted with Y(CH2SiMe3)(3)(THF)(2) to afford the corresponding bis(alkyl)s [(LY)-Y-1(CH2SiMe3)(2)] (1) and [(LY)-Y-2(CH2SiMe3)(2)] (2), respectively. Amination of 1 with 2,6-diisopropyl aniline gave the bis(amido) counterpart [(LY)-Y-1{N(H)(2,6-iPr(2)-C6H3)}(2)] (3), selectively. Treatment of Y(CH2SiMe3)(3)(THF)(2) with methoxy-modified anilido imine HL3 yielded bis(alkyl) complex [(LY)-Y-3(CH2SiMe3)(2)(THF)] (4) that sequentially reacted with 2,6-diisopropyl aniline to give the bis(amido) analogue [(LY)-Y-3{N(H)(2,6-iPr(2)-C6H3)}(2)] (5). Complex 2 was "base-free" monomer, in which the tetradentate beta-diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans-arrangement of the amido ligands. In contrast, the two cis-located alkyl species in complex 4 were endo and exo towards the 0,N,N tridentate anilido-imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring-opening polymerization Of L-LA at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel salicylaldimine-based neutral nickel(II) complexes, [(2,6-iPr(2)C(6)H(3))NCH(2-ArC6H3O)]Ni(PPh3)Ph (6, Ar = 2-(OH)C6H4; 8, Ar = 2-OH-3-(2,6-iPr(2)C(6)H(3)NCH)C6H3), have been synthesized, and their structures have also been confirmed by X-ray crystallography, elemental analysis, and H-1 and C-13 NMR spectra. An important structural feature of the two complexes is the free hydroxyl group, which allows them to react with silica pretreated with trimethylaluminum under immobilization by the formation of a covalent bond between the neutral nickel(II) complex and the pretreated silica. As active single-component catalysts, the two complexes exhibited high catalytic activities up to 1.14 and 1.47 x 10(6) g PE/mol(Ni)center dot h for ethylene polymerization, respectively, and yielded branched polymers. Requiring no cocatalyst, the two supported catalysts also showed relatively high activities up to 4.0 x 10(5) g PE/mol(Ni)center dot h and produced polyethylenes with high weight-average molecular weights of up to 120 kg/mol and a moderate degree of branching (ca. 13-26 branches per 1000 carbon atoms).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2-cyanoprop-2-yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANS were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. H-1 NMR analysis confirmed the high chain-end functionality of the resultant polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new straightforward strategy for synthesis of novel hyperbranched poly (ether amide)s from readily available monomers has been developed. By optimizing the reaction conditions, the AB(2)-type monomers were formed dominantly during the initial reaction stage. Without any purification, the AB(2) intermediate was subjected to further polymerization in the presence (or absence) of an initiator, to prepare the hyperbranched polymer-bearing multihydroxyl end-groups. The influence of monomer, initiator, and solvent on polymerization and the molecular weight (MW) of the resultant polymers was studied thoroughly. The MALDI-TOF MS of the polymers indicated that the polymerization proceeded in the proposed way. Analyses of H-1 NMR and C-13 NMR spectra revealed the branched structures of the polymers obtained. These polymers exhibit high-moderate MWs and broad MW distributions determined by gel permeation chromatography (GPC) in combination with triple detectors, including refractive index, light scattering, and viscosity detectors. In addition, the examination of the solution behavior of these polymers showed that the values of intrinsic viscosity [eta] and the Mark-Houwink exponent a were remarkably lower compared with their linear analogs, because of their branched nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atom transfer radical polymerization has been used to successfully synthesize polybutadiene. This was achieved by using MoO2Cl2/triphenyl phosphine as the catalyst and the various organic halide compounds such as methyl-2-chloropropionate, CCl4, 1,4-dichloromethyl benzene, I-phenylethyl chloride, and benzyl chloride as initiators. The monomer conversion increased up to 50% with polymerization time. The polydispersity indices of the polymers were as high as above 1.5. However, the polymerizations were controlled and the polydispersity indices of the polymers were less than 1.5 throughout the polymerization in reverse atom transfer radical polymerization. The chemical structure of the polymer obtained was characterized by (HNMR)-H-1 and FTIR. The valency states of molybdenum in this reactive system were detected by UV-vis spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two multi-nuclear titanium complexes [Ti(eta(5)-Cp-*) Cl(mu-O)](3) ( 1) and [(eta(5)-(CpTiCl)-Ti-*)(mu-O)(2)(eta(5)-(CpTi)-Ti-*)(2)(mu-O)(mu-O)(2)](2)Ti (Cp-* = C5Me5) ( 2) have been investigated as the precatalysts for syndiospecific polymerization of styrene. In the presence of modified methylaluminoxane ( MMAO) as a cocatalyst, complexes 1 and 2 display much higher catalytic activities towards styrene polymerization, and produce the higher molecular weight polystyrenes with higher syndiotacticities and melting temperatures ( T-m) than the mother complex (CpTiCl3)-Ti-* does when the polymerization temperature is above 70 degrees C and the Al/Ti molar ratio is in the low range especially.