588 resultados para Poço Quântico
Resumo:
Water and gas is a common by - product of the oil production process. Production may be compromised by the precipitation of inorganic salts in both the reservoir and producing well, through scale formation. This precipitation is likely the cause of the formation damage. High temperatures and h igh pressures (HTHP) may favor the precipitation of insoluble salts. The most common types of scale in oil fields are calcium carbonate and calcium sulphate, strontium and barium sulphate. New types of scale formation have attracted special attention such as zinc sulphide and lead. This precipitation may occur in the pores of reservoir rocks, in the production string and in equipment, causing obstructions and consequent production losses. In this study, the influence of well depth on incrustation compositio n was investigated to design removal treatments and assess the behavior of these deposits along the string, through the analysis of pressure and temperature. Scale residues were recovered from the inside of the production string of an oil and gas well duri ng the string removal operation. A total of 10 samples from different depths (15.4 m to 4061.5 m) were obtained. Initially a dissolution test was conducted in weak acid, similar to that used in removal operations with this type of scale formation. Majority composition was defined and confirmed by dissolution tests using X - Ray Fluorescence Spectroscopy (XRF), X - Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) techniques. Residues with distinct characteristics were observed in different proportion s, showing a tendency toward increased and/or decreased mass with depth. In the samples closest to the surface, typical sandstone residues were found, with calcium (45% Ca) as the metal of highest concentration. The obtained results indicate correlations o f the scale types studied with the depth and, consequently, with the thermodynamic conditions of pressure and temperature.
Resumo:
In the late 1980s, the quilombola (or maroon) communities emerged on the Brazilian public scene. They established themselves as new collective subjects and ethnic groups, in a historical moment of sensitive political changes in several social conflicts and struggles, both in Brazil and in Latin America. Because of their socio-cultural and historical singularities, these communities have self-identified in the same collective expression and have organized in search of recognition and respect for their rights. Quilombo communities and other self-labeled as "traditional communities" seek to reaffirm their differences in opposition to a conscious colonizer cultural project and re-signify their memories and traditions, that serve as reference in the construction of alternative production projects and community organization. One of the distinguishing characteristics of this quilombola political emergence process is the territorial nature of the struggles, manifested in at least two directions: on the one hand, the struggle for legal and formal recognition of a given space, i.e., the regularization and titling of occupied territories, considering that the Brazilian Constitution of 1988 recognizes the right of these communities to the final possession of the traditional lands. On the other hand, the struggle for recognition of their territoriality in a broader sense, not necessarily restricted to the demarcated area, but as the recognition of a culture and its own way of life, that originated historically in these territories. The current accomplishments and challenges of the Brazilian quilombola communities are well exemplified by the quilombo of Acauã, in the Poço Branco municipality of Rio Grande do Norte. The last fifteen years have been marked by important changes in this community, which has gained visibility and has emerged as a new political player. Acauã identified itself as quilombola community in 2004, the same year that it formalized its political structure, through the creation of the Association of Residents of Quilombo Acauã (AMQA, in Portuguese). Also in 2004, it requested to the National Institute of Colonization and Land Reform (INCRA, in Portuguese) the opening of the process for regularization and titling of quilombo territory, which is at an advanced stage, but so far without definitive resolution. This study aims to understand the process of territorialization (struggle for territorial claim) played in the last fifteen years by the community of Acauã.
Resumo:
The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.
Resumo:
The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.
Resumo:
Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way
Resumo:
Em 2015, o Estado do Pará inseriu-se na rede nacional de avaliação de variedades portaenxerto selecionadas pelo Programa de Melhoramento Genético de Citros da Embrapa Mandioca e Fruticultura - PMG Citros. Essas variedades têm como ênfase principal a tolerância à seca e o controle do huanglongbing (HLB, ex-greening). No Município de Capitão Poço, em parceria com citricultores, foram instalados os primeiros ensaios. Este trabalho avaliou, na Fazenda Ornela, a formação de um pomar de laranjeira 'pera' em combinação com seis porta-enxertos: limoeiro 'cravo santa cruz', tangerineira 'Sunki tropical' citrandaris 'riverside' e 'san diego', híbridos LVK x LCR - 010 e TSKC x CTSW - 033. O experimento foi disposto em blocos casualizados, onde cada porta-enxerto foi um tratamento, com quatro repetições e dez plantas por parcela experimental. Diante dos resultados obtidos das análises biométricas dos dois primeiros anos de desenvolvimento, pode-se afirmar que o citrandaris 'riverside' vem se destacando como porta-enxerto para laranjeira 'pera'.
Resumo:
A compreensão da Agricultura não é feita somente levando-se em consideração os aspectos técnicos de sua formação. Faz-se importante observar que tais aspectos estão vinculados aos elementos externos que influenciam diretamente no seu desenvolvimento, alterando, muitas vezes, os resultados finais. É assim que o clima aparece como elemento indispensável na agricultura. O cerne desta pesquisa pauta-se na análise do clima na atividade agrícola em escala têmporo-espacial no município de Poço Verde-Se Brasil. METODOLOGIA. A elaboração se estabeleceu a partir de um levantamento bibliográfico e pesquisa de campo que auxiliaram como embasamento teórico. RESULTADOS E DISCUSSÕES: Nota-se que o meio ecológico é um fator importante para o crescimento da lavoura, além dos fatores econômicos. Embora existam outros fatores como a genética, a irrigação, a hidroponia, porém não é uma realidade do município. As doenças e pragas prejudicam o desenvolvimento das lavouras e causam danos econômicos aos agricultores. A falta de capital suficiente é um dos problemas no setor agrícola deste município. Apresenta áreas com técnicas tradicionais de produção, mas também existem propriedades desenvolvendo agricultura industrializada. Conclui-se que é preciso de melhorias em fornecimento agrícolas, planejamento de zoneamento e irrigação, que possibilitaria uma melhoria socioeconômica aos agricultores.
Resumo:
Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.
Resumo:
So, when was the last time you checked your poo? Checking your poo – it probably is not a conversation many patients want to have with their pharmacists. But bowel cancer screening remains an important tool in cancer detection...
Resumo:
This paper gives a new iterative algorithm for kernel logistic regression. It is based on the solution of a dual problem using ideas similar to those of the Sequential Minimal Optimization algorithm for Support Vector Machines. Asymptotic convergence of the algorithm is proved. Computational experiments show that the algorithm is robust and fast. The algorithmic ideas can also be used to give a fast dual algorithm for solving the optimization problem arising in the inner loop of Gaussian Process classifiers.
Resumo:
Esta dissertação tem por objetivo o estudo geoquímico detalhado em poço da Bacia do Paraná, mais especificamente na cidade de Herval (RS), visando preencher algumas das lacunas existentes em termos de geoquímica orgânica da Formação Irati. Com base nos dados de carbono orgânico total, enxofre total, resíduo insolúvel, raios-gama, isótopos de carbono da matéria orgânica, pirólise Rock-Eval e biomarcadores individualizaram-se dez unidades quimioestratigráficas. Biomarcadores foram usados na caracterização dos ambientes deposicionais, na discriminação da origem da matéria orgânica e da influência da litologia. O ambiente deposicional das unidades A, B, C é óxico com salinidade normal. O topo da unidade B representa a superfície de inundação máxima, onde os valores de COT aumentam. Com base nos biomarcadores caracterizou-se um paleoambiente deposicional com alguma tendência anóxica. Nas unidades D e G ocorrem os folhelhos intercalados com carbonatos. Nestas, a concentração de COT é acima de 1%, porém, somente na unidade G há bom potencial gerador para gás e condensado. As unidades E e I apresentam elevados teores de carbono orgânico total, chegando a 16%. Os dados de pirólise Rock-Eval indicam um bom a excelente potencial gerador para óleo e gás. Os dados isotópicos possibilitaram a divisão da Formação Irati, no poço em estudo, em três ciclos. O primeiro, da base para o topo, corresponde ao Membro Taquaral, os outros dois correspondem ao Membro Assistência. No Membro Assistência o δ13C varia de acordo com a salinidade, aumento da produtividade primária e da preservação da matéria orgânica (anoxia).
Resumo:
A demanda crescente por poder computacional estimulou a pesquisa e desenvolvimento de processadores digitais cada vez mais densos em termos de transistores e com clock mais rápido, porém não podendo desconsiderar aspectos limitantes como consumo, dissipação de calor, complexidade fabril e valor comercial. Em outra linha de tratamento da informação, está a computação quântica, que tem como repositório elementar de armazenamento a versão quântica do bit, o q-bit ou quantum bit, guardando a superposição de dois estados, diferentemente do bit clássico, o qual registra apenas um dos estados. Simuladores quânticos, executáveis em computadores convencionais, possibilitam a execução de algoritmos quânticos mas, devido ao fato de serem produtos de software, estão sujeitos à redução de desempenho em razão do modelo computacional e limitações de memória. Esta Dissertação trata de uma versão implementável em hardware de um coprocessador para simulação de operações quânticas, utilizando uma arquitetura dedicada à aplicação, com possibilidade de explorar o paralelismo por replicação de componentes e pipeline. A arquitetura inclui uma memória de estado quântico, na qual são armazenados os estados individuais e grupais dos q-bits; uma memória de rascunho, onde serão armazenados os operadores quânticos para dois ou mais q-bits construídos em tempo de execução; uma unidade de cálculo, responsável pela execução de produtos de números complexos, base dos produtos tensoriais e matriciais necessários à execução das operações quânticas; uma unidade de medição, necessária à determinação do estado quântico da máquina; e, uma unidade de controle, que permite controlar a operação correta dos componente da via de dados, utilizando um microprograma e alguns outros componentes auxiliares.