976 resultados para Plateau Mont-Royal
Resumo:
A Consultation Paper
Resumo:
The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous ( approximate to 123 Ma) oceanic plateau accreted around 85-80 Ma (San Juan unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit). Picrites have LREE-depleted patterns, high epsilonNd(i) and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galapagos HIMU component; their epsilonNd(i) are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower epsilonNd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan-Multitud Unit by higher Pb ratios and lower epsilonNd(i). The Ecuadorian and Gorgona 88-86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92-86 Ma Mg-rich basalts of the Caribbean-Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOR The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (approximate to 68-65 Ma). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Four distinct rock units have been recognized near El Aguacate, in the Janico-Juncalito-La Vega area of the Duarte complex (Dominican Republic): (1) serpentinites crosscut by numerous diabasic dikes, (2) basalts interbedded with Late Jurassic ribbon cherts, (3) picrites and ankaramites relatively enriched in incompatible trace elements, and (4) amphibolites and gneissic amphibolites chemically similar to Oceanic Plateau Basalts. Similar Ar-Ar ages of late magmatic amphibole from a picrite, and hornblende from an amphibolite (86.1 +/- 1.3 Ma and 86.7 +/- 1.6 Ma, respectively), suggest that the Duarte picrites are contemporaneous with the Deep Sea Drilling Program Leg 15 and Ocean Drilling Program Leg 126 basalts drilled from the Caribbean oceanic plateau. These basalts are associated with sediments containing Late Cretaceous faunas. Sr, Nd, and Pb data show that enriched picrites and amphibolites are isotopically similar to mafic lavas from previously described Caribbean plateau and Galapagos hotspot basalts. Major element, trace element, and lead isotopic features of Late Jurassic basalts and diabases are consistent with those of normal oceanic crust basalt. However, these basalts differ from typical N-MORB because they have lower epsilon Nd ratios that plot within the range of Ocean Island Basalts. These rocks appear to represent remnants of the Caribbean Jurassic oceanic crust formed from an oceanic ridge possibly close to a hotspot. Later, they were tectonically juxtaposed with Late Cretaceous slices of the Caribbean-Colombian plateau.
Resumo:
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.
Resumo:
Pediculosis seems to have afflicted humans since the most ancient times and lice have been found in several ancient human remains. Examination of the head hair and pubic hair of the artificial mummy of Ferdinand II of Aragon (1467-1496), King of Naples, revealed a double infestation with two different species of lice, Pediculus capitis, the head louse, and Pthirus pubis, the pubic louse. The hair samples were also positive for the presence of mercury, probably applied as an anti-pediculosis therapy. This is the first time that these parasites have been found in the hair of a king, demonstrating that even members of the wealthy classes in the Renaissance were subject to louse infestation.
Resumo:
Donateur : Reclus, Élisée (1830-1905)
Resumo:
Donateur : Jackson, James (1843-1895)
Resumo:
Treball que té com a missió la de realitzar un estudi i un pla de difusió per tal de posar en valor una part dels búnquers pertanyents a l' Organització Defensiva dels Pirineus, popularment coneguda com a Línia P, a la comarca de l' Alt Empordà
Resumo:
Donateur : Reclus, Élisée (1830-1905)
Resumo:
Donateur : Jackson, James (1843-1895)