901 resultados para Plants, Effect of chloroform on
Resumo:
Chloromethylfurfural (CMF), a valuable intermediate for the production of chemicals and fuel, can be derived in high yields from the cellulose component of biomass. This study examined the effect of sugar cane bagasse components and biomass architecture on CMF/bio-oil yield using a HCl/dichloroethane biphasic system. The type of pretreatment affected bio-oil yield, as the CMF yield increased with increasing glucan content. CMF yield reached 81.9% with bagasse pretreated by acidified aqueous ionic liquid, which had a glucan content of 81.6%. The lignin content of the biomass was found to significantly reduce CMF yield, which was only 62.3% with acid-catalysed steam exploded sample having a lignin content of 29.6%. The change of CMF yield may be associated with fibre surface changes as a result of pretreatment. The hemicellulose content also impacted negatively on CMF yield. Storage of the bio-oil in chlorinated solvents prevented CMF degradation.
Resumo:
A new biobased composite was developed by adding soy flour (SF) to polypropylene (PP). This composite shows an enhanced tensile strength and modulus but decrease in elongation at break. The compatibilizer (coupling agent) appears to have a synergistic effect on tensile strength. The presence of the compatibilizer improves the dispersion of SF in the PP matrix. The addition of glycerol plasticizer to the composite improves the processability resulting in improved performance, as compared to composites without glycerol plasticizer. The optimal compatibilizer content appears to be 6%.
Resumo:
Poly(2-methoxy-5-[2'-ethylhexyoxy]-1,4-phenylenevinylene) (MEHPPV) derivatives with polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhibited a dramatic increase in their fluorescence intensity in the presence of a variety of surfactants, even at concentrations far below their critical micelle concentrations (CMC). This increase was accompanied by a blue-shift in the emission maximum. These observations are rationalized based on the postulate that the backbone conformation of the conjugated polymer is modulated upon interaction of the surfactant molecules with the polyelectrolytic tethers, which in turn results in a significant depletion of intra-chain interchromophore interactions that are known to cause red-shifted emission bands with significantly lower emission yields.
Resumo:
Investigations on the electrical switching behavior and thermal studies using Alternating Differential Scanning Calorimetry have been undertaken on bulk, melt-quenched Ge22Te78-,Is (3 <= x <= 10) chalcohalide glasses. All the glasses studied have been found to exhibit memory-type electrical switching. The threshold voltages of Ge22Te78-I-x(x) glasses have been found to increase with the addition of iodine and the composition dependence of threshold voltages of Ge22Te78-xIx glasses exhibits a cusp at 5 at.% of iodine. Also, the variation with composition of the glass transition temperature (Tg) of Ge22Te78-I-x(x) glasses, exhibits a broad hump around this composition. Based on the present results, the composition x = 5 has been identified as the inverse rigidity percolation threshold at which Ge22Te78-I-x(x) glassy system exhibits a change from a stressed rigid amorphous solid to a flexible polymeric glass. Further, a sharp minimum is seen in the composition dependence of non-reversing enthalpy (Delta H-nr) of Ge22Te78-I-x(x) glasses at x = 5, which is suggestive of a thermally reversing window at this composition. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Nickel rich NiTi films were sputter deposited on p-doped Si left angle bracket1 0 0right-pointing angle bracket substrates maintained at 300 °C. The films were subsequently solution treated at 700 °C for 30 min followed by ageing at 400 and 500 °C for 5 h. The microstructure of the films was examined by TEM and these studies revealed that the NiTi films were mostly amorphous in the as-deposited condition. The subsequent solution treatment and ageing resulted in crystallization of the films with the film aged at 400 °C exhibiting nanocrystalline grains and three phases viz. B2 (austenite), R and Ni3Ti2 whereas the film aged at 500 °C shows micron sized grains and two phases viz. R and Ni3Ti2. Nanoindentation studies revealed that the nature of the load versus indentation depth response for the films aged at 400 and 500 °C was different. For the same load, the indenter penetrated to a much greater depth for the film aged at 400 °C as compared to the film aged at 500 °C. Also the ratio of the residual indentation depth (hf) to maximum indentation depth (hmax) is lower for the film aged at 400 °C as compared to the film aged at 500 °C. This was attributed to the occurrence of stress induced martensitic transformation of the B2 phase present in the film aged at 400 °C during indentation loading which results in a transformation strain in addition to the normal elastic and plastic strains and its subsequent recovery on unloading. The hardness and elastic modulus measured using the Oliver and Pharr analysis was also found to be lower for the film aged at 400 °C as compared to the film aged at 500 °C which was also primarily attributed to the same effect.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carboxyl ates were analyzed in order to understand the effect of variations in functional groups on molecular geometry, conformation and packing of molecules in the crystalline lattice. It is observed that the existence of a short intra-molecular C-H center dot center dot center dot pi interaction between the aromatic hydrogen of the aryl ring with the isolated double bond of the six-membered tetrahydropyrimidine ring is a key feature which imparts additional stability to the molecular conformation in the solid state. The compounds pack via the cooperative involvement of both N-H center dot center dot center dot S=C and N-H center dot center dot center dot O=C intermolecular dimers forming a sheet like structure. In addition, weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi intermolecular interactions provide additional stability to the crystal packing.
Resumo:
Titration calorimetry measurements of the binding of phenyl-alpha (alpha PhOGlu), 3-methoxy (3MeOGlu), fluorodeoxy and deoxy derivatives of alpha-D-glucopyranose (Glu) to concanavalin A (conA), pea lectin and lentil lectin were performed at approx. 10 and 25 degrees C in 0.01 M dimethylglutaric acid/NaOH buffer, pH 6.9, containing 0.15 M NaCl and Mn2+ and Ca2+ ions. Apparently the 3-deoxy, 4-deoxy and 6-deoxy as well as the 4-fluorodeoxy and 6-fluorodeoxy derivatives of Glu do not bind to the lectins because no heat release was observed on the addition of aliquots of solutions of these derivatives to the lectin solutions. The binding enthalpies, delta H0b, and entropies, delta S0b, determined from the measurements were compared with the same thermodynamic binding parameters for Glu, D-mannopyranoside and methyl-alpha- D-glucopyranoside (alpha MeOGlu). The binding reactions are enthalpically driven with little change in the heat capacity on binding, and exhibit enthalpy-entropy compensation. Differences between the thermodynamic binding parameters can be rationalized in terms of the interactions apparent in the known crystal structures of the methyl-alpha-D-mannopyranoside-conA [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan and Campbell (1989) EMBO J. 8, 2189-2193] and pea lectin-trimanno-pyranoside [Rini, Hardman, Einspahr, Suddath and Carber (1993) J. Biol. Chem. 268, 10126-10132] complexes. Increases in the entropy change on binding are observed for alpha MeOGlu binding to pea and lentil lectin, for alpha PhOGlu binding to conA and pea lectin, and for 3MeOGlu binding to pea lectin relative to the entropy change for Glu binding, and imply that the phenoxy and methoxy substituents provide additional hydrophobic interactions in the complex. Increases in the binding enthalpy relative to that of Glu are observed for deoxy and fluoro derivatives in the C-1 and C-2 positions and imply that these substituents weaken the interaction with the surrounding water, thereby strengthening the interaction with the binding site.
Resumo:
Moudgal and co-workers1-3 recently reported that the administration to intact pregnant rats of rabbit antiserum ovine interstitial cell stimulating hormone (ICSH) on any one day between the eighth and twelfth days of pregnancy resulted in resorption of foetuses and termination of pregnancy. This effect was readily reversed by the simultaneous administration of progesterone but not by oestradiol-17β. These observations suggested that ICSH was involved in progesterone synthesis and as such is a luteotropic factor in the rat.
Resumo:
Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.
Resumo:
The effect of vibration on heat transfer from a horizontal copper cylinder, 0.344 in. in diameter and 6 in. long, was investigated. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the direction of the air stream. The flow velocity varied from 19 ft/s to 92 ft/s; the double amplitude of vibration from 0.75 cm to 3.2 cm, and the frequency of vibration from 200 to 2800 cycles/min. A transient technique was used to determine the heat transfer coefficients. The experimental data in the absence of vibration is expressed by NNu = 0.226 NRe0.6 in the range 2500 < NRe < 15 000. By imposing vibrational velocities as high as 20 per cent of the flow velocity, no appreciable change in the heat transfer coefficient was observed. An analysis using the resultant of the vibration and the flow velocity explains the observed phenomenon.
Resumo:
The magnetic susceptibilities of certain vanadium pentoxide systems supported by kieselgur have been determined in the temperature interval 30° to 400° C. The plot of reciprocal susceptibility against temperature for all the systems studied indicates sudden deflections at temperatures which are about 150° lower than those of optimum catalytic activity. It has been suggested that these points may mark the temperatures of commencement of structural changes which may be responsible for the activity of these catalysts.