960 resultados para Plant-insect interactions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previously we reported that oxalate oxidase activity increases in extracts of barley (Hordeum vulgare) leaves in response to the powdery mildew fungus (Blumeria [syn. Erysiphe] graminis f.sp. hordei) and proposed this as a source of H2O2 during plant-pathogen interactions. In this paper we show that the N terminus of the major pathogen-response oxalate oxidase has a high degree of sequence identity to previously characterized germin-like oxalate oxidases. Two cDNAs were isolated, pHvOxOa, which represents this major enzyme, and pHvOxOb', representing a closely related enzyme. Our data suggest the presence of only two oxalate oxidase genes in the barley genome, i.e. a gene encoding HvOxOa, which possibly exists in several copies, and a single-copy gene encoding HvOxOb. The use of 3′ end gene-specific probes has allowed us to demonstrate that the HvOxOa transcript accumulates to 6 times the level of the HvOxOb transcript in response to the powdery mildew fungus. The transcripts were detected in both compatible and incompatible interactions with a similar accumulation pattern. The oxalate oxidase is found exclusively in the leaf mesophyll, where it is cell wall located. A model for a signal transduction pathway in which oxalate oxidase plays a central role is proposed for the regulation of the hypersensitive response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclic terpenes and terpenoids are found throughout nature. They comprise an especially important class of compounds from plants that mediate plant- environment interactions, and they serve as pharmaceutical agents with antimicrobial and anti-tumor activities. Molecular comparisons of several terpene cyclases, the key enzymes responsible for the multistep cyclization of C10, C15, and C20 allylic diphosphate substrates, have revealed a striking level of sequence similarity and conservation of exon position and size within the genes. Functional domains responsible for a terminal enzymatic step were identified by swapping regions approximating exons between a Nicotiana tabacum 5-epi-aristolochene synthase (TEAS) gene and a Hyoscyamus muticus vetispiradiene synthase (HVS) gene and by characterization of the resulting chimeric enzymes expressed in bacteria. While exon 4 of the TEAS gene conferred specificity for the predominant reaction products of the tobacco enzyme, exon 6 of the HVS gene conferred specificity for the predominant reaction products of the Hyoscyamus enzyme. Combining these two functional domains of the TEAS and HVS genes resulted in a novel enzyme capable of synthesizing reaction products reflective of both parent enzymes. The relative ratio of the TEAS and HVS reaction products was also influenced by the source of exon 5 present in the new chimeric enzymes. The association of catalytic activities with conserved but separate exonic domains suggests a general means for generating additional novel terpene cyclases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tetratheca juncea Smith (Tremandraceae) has undergone a range contraction of approx. 50 km in the last 100 years and is now listed as a vulnerable sub-shrub restricted to the central and north coast regions of New South Wales, Australia. There are approx. 250 populations in a 110 km north-south distribution and populations are usually small with fewer than 50 plants/clumps. The reproductive ecology of the species was studied to determine why seed-set is reportedly rare. Flowers are bisexual, odourless and nectarless. Flowers are presented dependentally and there are eight stamens recurved around the pistil. Anthers are poricidal, contain viable pollen and basally contain a deep-red tapetal fluid that is slightly oily. Thus flowers are presented for buzz pollinators, although none were observed at flowers during our study. The species was found to be facultatively xenogamous with only one in 50 glasshouse flowers setting seed autogamously, i.e. without pollinator assistance. Field studies revealed fertile fruit in 24 populations but production varied significantly across sites from exceedingly low (0.6 fruits per plant clump) to low (17 fruits per plant clump). Fruit-set ranged from 0 to 65%, suggesting that pollen vectors exist or that autogamy levels in the field are variable and higher than glasshouse results. Fruit production did not vary with population size, although in three of the five populations in the south-west region more than twice as much fruit was produced as in populations elsewhere. A moderately strong relationship between foliage volume and fruit : flower ratios suggests that bigger plants may be more attractive than smaller plants to pollinators. A review of Tetratheca pollination ecology revealed that several species are poorly fecund and pollinators are rare. The habitat requirements for Tetratheca, a genus of many rare and threatened species, is discussed. (C) 2003 Annals of Botany Company.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Floral volatiles play a major role in plant-insect communication. We examined the influence of two volatiles, phenylacetaldehyde and a-pinene, on the innate and learnt foraging behaviour of the moth Helicoverpa armigera. In dual-choice wind tunnel tests, adult moths flew upwind towards both volatiles, with a preference for phenylacetaldehyde. When exposure to either of these volatiles was paired with a feeding stimulus (sucrose), all moths preferred the learnt odour in the preference test. This change in preference was not seen when moths were exposed to the odour without a feeding stimulus. The learnt preference for the odour was reduced when moths were left unfed for 24 h before the preference test. We tested whether moths could discriminate between flowers that differed in a single volatile component. Moths were trained to feed on flowers that were odour-enhanced using either phenylacetaldehyde or a-pinene. Choice tests were then carried out in an outdoor flight cage, using flowers enhanced with either volatile. Moths showed a significant preference for the flower type on which they were trained. Moths that were conditioned on flowers that were not odour-enhanced showed no preference for either of the odour-enhanced flower types. The results imply that moths may be discriminating among odour profiles of individual flowers from the same species. We discuss this behaviour within the context of nectar foraging in moths and odour signalling by flowering plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding alpha-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P < 0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic alpha-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant-herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Positive-sense RNA viruses are important animal, plant, insect and bacteria pathogens and constitute the largest group of RNA viruses. Due to the relatively small size of their genomes, these viruses have evolved a variety of non-canonical translation mechanisms to optimize coding capacity expanding their proteome diversity. One such strategy is codon redefinition or recoding. First described in viruses, recoding is a programmed translation event in which codon alterations are context dependent. Recoding takes place in a subset of messenger RNA (mRNAs) with some products reflecting new, and some reflecting standard, meanings. The ratio between the two is both critical and highly regulated. While a variety of recoding mechanisms have been documented, (ribosome shunting, stop-carry on, termination-reinitiation, and translational bypassing), the two most extensively employed by RNA viruses are Programmed Ribosomal Frameshifting (PRF) and Programmed Ribosomal Readthrough (PRT). While both PRT and PRF subvert normal decoding for expression of C-terminal extension products, the former involves an alteration of reading frame, and the latter requires decoding of a non-sense codon. Both processes occur at a low but defined frequency, and both require Recoding Stimulatory Elements (RSE) for regulation and optimum functionality. These stimulatory signals can be embedded in the RNA in the form of sequence or secondary structure, or trans-acting factors outside the mRNA such as proteins or micro RNAs (miRNA). Despite 40+ years of study, the precise mechanisms by which viral RSE mediate ribosome recoding for the synthesis of their proteins, or how the ratio of these products is maintained, is poorly defined. This study reveals that in addition to a long distance RNA:RNA interaction, three alternate conformations and a phylogenetically conserved pseudoknot regulate PRT in the carmovirus Turnip crinkle virus (TCV).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Botânica, Programa de Pós-Graduação em Botânica, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study addressed the effects of salinity and pot size on the interaction between leguminous plant hosts and arbuscular mycorrhizal fungi in four pine rockland soils using a shade house trap-plant experiment. Little is known about the belowground diversity of pine rocklands and the interactions between aboveground and belowground biota – an increased understanding of these interactions could lead to improved land management decisions, conservation and restoration efforts. Following twelve weeks of growth, plants were measured for root and shoot dry biomass and percent colonization by arbuscular mycorrhizal fungi. Overall, arbuscular mycorrhizal fungi had positive fitness effects on the four legume species (Cajanus cajan, Chamaecrista fasciculata, Tephrosia angustissima and Abrus precatorius), improving their growth rate, shoot and root biomass; pot size influenced plant-fungal interactions; and percent colonization by arbuscular mycorrhizal fungi was influenced by soil type as well as salinity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The state of Florida has one of the most severe exotic species invasion problems in the United States, but little is known about their influence on soil biogeochemistry. My dissertation research includes a cross-continental field study in Australia, Florida, and greenhouse and growth chamber experiments, focused on the soil-plant interactions of one of the most problematic weeds introduced in south Florida, Lygodium microphyllum (Old World climbing fern). Analysis of field samples from the ferns introduced and their native range indicate that L microphyllum is highly dependent on arbuscular mycorrhizal fungi (AMF) for phosphorus uptake and biomass accumulation. Relationship with AMF is stronger in relatively dry conditions, which are commonly found in some Florida sites, compared to more common wet sites where the fern is found in its native Australia. In the field, L. microphyllum is found to thrive in a wide range of soil pH, texture, and nutrient conditions, with strongly acidic soils in Australia and slightly acidic soils in Florida. Soils with pH 5.5 - 6.5 provide the most optimal growth conditions for L. microphyllum, and the growth declines significantly at soil pH 8.0, indicating that further reduction could happen in more alkaline soils. Comparison of invaded and uninvaded soil characteristics demonstrates that L. microphyllum can change the belowground soil environment, with more conspicuous impact on nutrient-poor sandy soils, to its own benefit by enhancing the soil nutrient status. Additionally, the nitrogen concentration in the leaves, which has a significant influence in the relative growth rate and photosynthesis, was significantly higher in Florida plants compared to Australian plants. Given that L. microphyllum allocates up to 40% of the total biomass to rhizomes, which aid in rapid regeneration after burning, cutting or chemical spray, hence management techniques targeting the rhizomes look promising. Over all, my results reveal for the first time that soil pH, texture, and AMF are major factors facilitating the invasive success of L. mcirophyllum. Finally, herbicide treatments targeting rhizomes will most likely become the widely used technique to control invasiveness of L. microphyllum in the future. However, a complete understanding of the soil ecosystem is necessary before adding any chemicals to the soil to achieve a successful long-term invasive species management strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Floral morphology and biology are important characteristics for plant-pollinator interactions and may influence the behavior of these agents. This study aimed to determine which floral attributes of different melon hybrids influence this interaction and, consequently, their attractiveness in simultaneous crops. The study was conducted in the region of Petrolina, State of Pernambuco (PE)/Juazeiro, State of Bahia (BA) and Mossoró, State of Rio Grande do Norte (RN), in areas with the following melon hybrids: Yellow type, Piel de Sapo, Cantaloupe and Galia. For studies on floral morphology and biology, hermaphrodites and male flowers of each hybrid were analyzed for their size and nectar chamber size, pollen and nectar production, anthesis time and flower lifespan. Floral visitors were observed simultaneously in hybrids of three types of melon, from 5:00 a.m. to 6:00 p.m., in the two study sites. Evaluations of the corolla diameter and flower height indicated that the hermaphrodite flowers were larger in size than male flowers in all types of melon investigated, in both study sites. As for nectar chamber, male flowers are larger in width, but smaller in height, compared to hermaphrodite flowers. Regarding the volume of nectar, differences were found between floral types for the hybrids evaluated, in the two study sites; the hermaphrodite flowers produced 2-7 times more nectar than male flowers in all studied hybrids. Observations of visits of Apis mellifera to areas with simultaneous flowering of the three types of melon demonstrated differences in the frequency of visits between hybrids, floral type and foraged resource. Flowers of the hybrids Piel de Sapo and Cantaloupe exhibited larger corolla diameter, larger dimensions of the nectar chamber and greater supply of resources for foraging, which could explain the higher number of visits of bees to their flowers in the sites studied.