908 resultados para Plant water use
Resumo:
Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ13C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier 13C due to closing stomata leading to an enrichment of 13C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ13C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ13C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ13C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.
Resumo:
he size of seeds and the microsite of seed dispersal may affect the early establishment of seedlings through different physiological processes. Here, we examined the effects of seed size and light availability on seedling growth and survival, and whether such effects were mediated by water use efficiency. Acorns of Quercus petraea and the more drought-tolerant Quercus pyrenaica were sowed within and around a tree canopy gap in a sub-Mediterranean forest stand. We monitored seedling emergence and measured predawn leaf water potential (Ψpd), leaf nitrogen per unit area (Na), leaf mass per area, leaf carbon isotope composition (δ13C) and plant growth at the end of the first summer. Survival was measured on the next year. Path analysis revealed a consistent pattern in both species of higher δ13C as Ψpd decreased and higher δ13C as seedlings emerged later in the season, indicating an increase in 13C as the growing season is shorter and drier. There was a direct positive effect of seed size on δ13C in Q. petraea that was absent in Q. pyrenaica. Leaf δ13C had no effect on growth but the probability of surviving until the second year was higher for those seedlings of Q. pyrenaica that had lower δ13C on the first year. In conclusion, leaf δ13C is affected by seed size, seedling emergence time and the availability of light and water, however, leaf δ13C is irrelevant for first year growth, which is directly dependent on the amount of seed reserves.
Resumo:
Una gestión más eficiente y equitativa del agua a escala de cuenca no se puede centrar exclusivamente en el recurso hídrico en sí, sino también en otras políticas y disciplinas científicas. Existe un consenso creciente de que, además de la consideración de las cambiantes condiciones climáticas, es necesaria una integración de ámbitos de investigación tales como la agronomía, planificación del territorio y ciencias políticas y económicas a fin de satisfacer de manera sostenible las demandas de agua por parte de la sociedad y del medio natural. La Política Agrícola Común (PAC) es el principal motor de cambio en las tendencias de paisajes rurales y sistemas agrícolas, pero el deterioro del medio ambiente es ahora una de las principales preocupaciones. Uno de los cambios más relevantes se ha producido con la expansión e intensificación del olivar en España, principalmente con nuevas zonas de regadío o la conversión de olivares de secano a sistemas en regadío. Por otra parte, el cambio de las condiciones climáticas podría ejercer un papel importante en las tendencias negativas de las aportaciones a los ríos, pero no queda claro el papel que podrían estar jugando los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas de caudal observadas. Esta tesis tiene como objetivo mejorar el conocimiento de los efectos de la producción agrícola, política agraria y cambios de uso de suelo y cobertura vegetal sobre las condiciones de calidad del agua, respuesta hidrológica y apropiación del agua por parte de la sociedad. En primer lugar, el estudio determina las tendencias existentes de nitratos y sólidos en suspensión en las aguas superficiales de la cuenca del río Guadalquivir durante el periodo de 1998 a 2009. Desde una perspectiva de política agraria, la investigación trata de evaluar mediante un análisis de datos de panel las principales variables, incluyendo la reforma de la PAC de 2003, que están teniendo una influencia en ambos indicadores de calidad. En segundo lugar, la apropiación del agua y el nivel de contaminación por nitratos debido a la producción del aceite de oliva en España se determinan con una evaluación de la huella hídrica (HH), teniendo en cuenta una variabilidad espacial y temporal a largo de las provincias españolas y entre 1997 y 2008. Por último, la tesis analiza los efectos de los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas observadas en la zona alta del Turia, cabecera de la cuenca del río Júcar, durante el periodo 1973-2008 mediante una modelización ecohidrológica. En la cuenca del Guadalquivir cerca del 20% de las estaciones de monitoreo muestran tendencias significativas, lineales o cuadráticas, para cada indicador de calidad de agua. La mayoría de las tendencias significativas en nitratos están aumentando, y la mayoría de tendencias cuadráticas muestran un patrón en forma de U. Los modelos de regresión de datos de panel muestran que las variables más importantes que empeoran ambos indicadores de calidad del agua son la intensificación de biomasa y las exportaciones de ambos indicadores de calidad procedentes de aguas arriba. En regiones en las que el abandono agrícola y/o desintensificación han tenido lugar han mejorado las condiciones de calidad del agua. Para los nitratos, el desacoplamiento de las subvenciones a la agricultura y la reducción de la cuantía de las subvenciones a tierras de regadío subyacen en la reducción observada de la concentración de nitratos. Las medidas de modernización de regadíos y el establecimiento de zonas vulnerables a nitratos reducen la concentración en subcuencas que muestran una tendencia creciente de nitratos. Sin embargo, el efecto de las exportaciones de nitratos procedente de aguas arriba, la intensificación de la biomasa y los precios de los cultivos presentan un mayor peso, explicando la tendencia creciente observada de nitratos. Para los sólidos en suspensión, no queda de forma evidente si el proceso de desacoplamiento ha influido negativa o positivamente. Sin embargo, los mayores valores de las ayudas agrarias aún ligadas a la producción, en particular en zonas de regadío, conllevan un aumento de las tasas de erosión. Aunque la cuenca del Guadalquivir ha aumentado la producción agrícola y la eficiencia del uso del agua, el problema de las altas tasas de erosión aún no ha sido mitigado adecuadamente. El estudio de la huella hídrica (HH) revela que en 1 L de aceite de oliva español más del 99,5% de la HH está relacionado con la producción de la aceituna, mientras que menos del 0,5% se debe a otros componentes, es decir, a la botella, tapón y etiqueta. Durante el período estudiado, la HH verde en secano y en regadío representa alrededor del 72% y 12%, respectivamente, del total de la HH. Las HHs azul y gris representan 6% y 10%, respectivamente. La producción de aceitunas se concentra en regiones con una HH menor por unidad de producto. La producción de aceite de oliva ha aumentado su productividad del agua durante 1997-2008, incentivado por los crecientes precios del aceite, como también lo ha hecho la cantidad de exportaciones de agua virtual. De hecho, las mayores zonas productoras presentan una eficiencia alta del uso y de productividad del agua, así como un menor potencial de contaminación por nitratos. Pero en estas zonas se ve a la vez reflejado un aumento de presión sobre los recursos hídricos locales. El aumento de extracciones de agua subterránea relacionadas con las exportaciones de aceite de oliva podría añadir una mayor presión a la ya estresada cuenca del Guadalquivir, mostrando la necesidad de equilibrar las fuerzas del mercado con los recursos locales disponibles. Los cambios de uso de suelo y cobertura vegetal juegan un papel importante en el balance del agua de la cuenca alta del Turia, pero no son el principal motor que sustenta la reducción observada de caudal. El aumento de la temperatura es el principal factor que explica las mayores tasas de evapotranspiración y la reducción de caudales. Sin embargo, los cambios de uso de suelo y el cambio climático han tenido un efecto compensatorio en la respuesta hidrológica. Por un lado, el caudal se ha visto afectado negativamente por el aumento de la temperatura, mientras que los cambios de uso de suelo y cobertura vegetal han compensado positivamente con una reducción de las tasas de evapotranspiración, gracias a los procesos de disminución de la densidad de matorral y de degradación forestal. El estudio proporciona una visión que fortalece la interdisciplinariedad entre la planificación hidrológica y territorial, destacando la necesidad de incluir las implicaciones de los cambios de uso de suelo y cobertura vegetal en futuros planes hidrológicos. Estos hallazgos son valiosos para la gestión de la cuenca del río Turia, y el enfoque empleado es útil para la determinación del peso de los cambios de uso de suelo y cobertura vegetal en la respuesta hidrológica en otras regiones. ABSTRACT Achieving a more efficient and equitable water management at catchment scale does not only rely on the water resource itself, but also on other policies and scientific knowledge. There is a growing consensus that, in addition to consideration of changing climate conditions, integration with research areas such as agronomy, land use planning and economics and political science is required to meet sustainably the societal and environmental water demands. The Common Agricultural Policy (CAP) is a main driver for trends in rural landscapes and agricultural systems, but environmental deterioration is now a principal concern. One of the most relevant changes has occurred with the expansion and intensification of olive orchards in Spain, taking place mainly with new irrigated areas or with the conversion from rainfed to irrigated systems. Moreover, changing climate conditions might exert a major role on water yield trends, but it remains unclear the role that ongoing land use and land cover changes (LULCC) might have on observed river flow trends. This thesis aims to improve the understanding of the effects of agricultural production, policies and LULCC on water quality conditions, hydrological response and human water appropriation. Firstly, the study determines the existing trends for nitrates and suspended solids in the Guadalquivir river basin’s surface waters (south Spain) during the period from 1998 to 2009. From a policy perspective, the research tries to assess with panel data analysis the main drivers, including the 2003 CAP reform, which are having an influence on both water quality indicators. Secondly, water appropriation and nitrate pollution level originating from the production of olive oil in Spain is determined with a water footprint (WF) assessment, considering a spatial temporal variability across the Spanish provinces and from 1997 to 2008 years. Finally, the thesis analyzes the effects of the LULCC on the observed negative trends over the period 1973-2008 in the Upper Turia basin, headwaters of the Júcar river demarcation (east Spain), with ecohydrological modeling. In the Guadalquivir river basin about 20% of monitoring stations show significant trends, linear or quadratic, for each water quality indicator. Most significant trends of nitrates are augmenting than decreasing, and most significant quadratic terms of both indicators exhibit U-shaped patterns. The panel data models show that the most important drivers that are worsening nitrates and suspended solids in the basin are biomass intensification and exports of both water quality indicators from upland regions. In regions that agricultural abandonment and/or de-intensification have taken place the water quality conditions have improved. For nitrates, the decoupling of agricultural subsidies and the reduction of the amount of subsidies to irrigated land underlie the observed reduction of nitrates concentration. Measures of irrigation modernization and establishment of vulnerable zones to nitrates ameliorate the concentration of nitrates in subbasins showing an increasing trend. However, the effect of nitrates load from upland areas, intensification of biomass and crop prices present a greater weight leading to the final increasing trend in this subbasins group, where annual crops dominate. For suspended solids, there is no clear evidence that decoupling process have influenced negatively or positively. Nevertheless, greater values of subsidies still linked to production, particularly in irrigated regions, lead to increasing erosion rates. Although agricultural production has augmented in the basin and water efficiency in the agricultural sector has improved, the issue of high erosion rates has not yet been properly faced. The water footprint (WF) assessment reveals that for 1 L Spanish olive oil more than 99.5% of the WF is related to the olive fruit production, whereas less than 0.5% is due to other components i.e. bottle, cap and label. Over the studied period, the green WF in rainfed and irrigated systems represents about 72% and 12%, respectively, of the total WF. Blue and grey WFs represent 6% and 10%, respectively. The olive production is concentrated in regions with the smallest WF per unit of product. The olive oil production has increased its apparent water productivity from 1997 to 2008 incentivized by growing trade prices, but also did the amount of virtual water exports. In fact, the largest producing areas present high water use efficiency per product and apparent water productivity as well as less nitrates pollution potential, but this enhances the pressure on the available water resources. Increasing groundwater abstractions related to olive oil exports may add further pressure to the already stressed Guadalquivir basin. This shows the need to balance the market forces with the available local resources. Concerning the effects of LULCC on the Upper Turia basin’s streamflow, LULCC play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting larger evapotranspiration rates and streamflow reduction. In fact, LULCC and climate change have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. The research provides insight for strengthening the interdisciplinarity between hydrological and spatial planning, highlighting the need to include the implications of LULCC in future hydrological plans. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions.
Resumo:
This study evaluated whether development of the Colorado River system has exceeded sustainability by comparing the trends in water use in the Colorado River. Two sustainable areas were identified in the upper basin and one in the lower-- the mainstream Colorado River, Green and Yampa rivers, and the Little Colorado River. These areas are also high priority recovery areas for four endangered fishes and protected by critical habitat provisions of the ESA. Unfortunately, the endangered fishes are declining because of habitat destruction and non-native species. If increasing water demand causes the fishes to go extinct the few sustainable areas will be lost. It will take careful management of the endangered fishes and water users to ensure these areas are maintained.
Resumo:
Mode of access: Internet.
Resumo:
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.
Resumo:
The relevance of endocrine-disrupting compounds as potential contaminants of drinking water is reviewed, particularly in the reuse of wastewater. Growing populations and increasing intensification of land and water use for industry and agriculture have increased the need to reclaim wastewater for reuse, including to supplement the drinking water supply. The variety of anthropogenic chemicals that have been identified as potential endocrine disruptors in the environment and the problems arising from their use as human and livestock pharmaceuticals, as agricultural chemicals and in industry are discussed. The potentially adverse impact of these chemicals on human health and the ecology of the natural environment are reviewed. Data for the removal of estrogenic compounds from wastewater treatment are presented, together with the comparative potencies of estrogenic compounds. The relative exposure to estrogens of women on oral contraceptives, hormone replacement therapy, and through food consumption is estimated. A brief overview of some methods available or under development for the assessment of estrogenic activity in environmental samples is provided. The review concludes with a discussion of the directions for further investigation, which include human epidemiology, methodology development, and wastewater monitoring. (C) 2006 Wiley Periodicals, Inc.
Resumo:
Multiple-sown field trials in 4 consecutive years in the Riverina region of south-eastern Australia provided 24 different combinations of temperature and day length, which enabled the development of crop phenology models. A crop model was developed for 7 cultivars from diverse origins to identify if photoperiod sensitivity is involved in determining phenological development, and if that is advantageous in avoiding low-temperature damage. Cultivars that were mildly photoperiod-sensitive were identified from sowing to flowering and from panicle initiation to flowering. The crop models were run for 47 years of temperature data to quantify the risk of encountering low temperature during the critical young microspore stage for 5 different sowing dates. Cultivars that were mildly photoperiod-sensitive, such as Amaroo, had a reduced likelihood of encountering low temperature for a wider range of sowing dates compared with photoperiod-insensitive cultivars. The benefits of increased photoperiod sensitivity include greater sowing flexibility and reduced water use as growth duration is shortened when sowing is delayed. Determining the optimal sowing date also requires other considerations, e. g. the risk of cold damage at other sensitive stages such as flowering and the response of yield to a delay in flowering under non-limiting conditions. It was concluded that appropriate sowing time and the use of photoperiod-sensitive cultivars can be advantageous in the Riverina region in avoiding low temperature damage during reproductive development.
Resumo:
Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.
Resumo:
This research project was driven by the recurring complaints and concerns voiced in the media by residents living in the Valley area of the community of Happy Valley-Goose Bay, Labrador. Drinking water in this town is supplied by two water treatment plants (a municipality treatment plant and a DND treatment plant), which use raw water from two different sources (groundwater from multiple wells versus surface water from Spring Gulch brook) and use two different processes of drinking-water treatment. In fact, the drinking water supplied in the Valley area has a unique distribution arrangement. To meet demand, the Valley area is served by a blend of treated waters from a storage reservoir (Sandhill reservoir), which is fed by both water treatment plants. Most of the time, treated water from the municipal treatment plant dominates in the mixture. As water travels through the distribution system and household plumbing, specific reactions can occur either in the water itself and/or at the solid–liquid interface at the pipe walls; this is strongly influenced by the physical and chemical characteristics of the water. These reactions can introduce undesirable chemical compounds and/or favor the growth of bacteria in the drinking water, causing the deterioration of the quality of water reaching the consumer taps. In the distribution system in general, these chemical constituents and bacteria may pose potential threats to health or the water’s aesthetic qualities (smell, taste or appearance). Drinking water should be not only safe, but also palatable.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.
Resumo:
Water is now considered the most important but vulnerable resource in the Mediterranean region. Nev ertheless, irrigation expanded fast in the region (e.g. South Portugal and Spain) to mitigate environmental stress and to guarantee stable grape yield and quality. Sustainable wine production depends on sustain able water use in the wine’s supply chain, from the vine to the bottle. Better understanding of grapevine stress physiology (e.g. water relations, temperature regulation, water use efficiency), more robust crop monitoring/phenotyping and implementation of best water management practices will help to mitigate climate effects and will enable significant water savings in the vineyard and winery. In this paper, we focused on the major vulnerabilities and opportunities of South European Mediterranean viticulture (e.g. in Portugal and Spain) and present a multi-level strategy (from plant to the consumer) to overcome region’s weaknesses and support strategies for adaptation to water scarcity, promote sustainable water use and minimize the environmental impact of the sector.
Resumo:
Water is now considered the most important but vulnerable resource in the Mediterranean region. Nevertheless, irrigation expanded fast in the region (e.g. South Portugal and Spain) to mitigate environmental stress and to guarantee stable grape yield and quality. Sustainable wine production depends on sustainable water use in the wine’s supply chain, from the vine to the bottle. Better understanding of grapevine stress physiology (e.g. water relations, temperature regulation, water use efficiency), more robust crop monitoring/phenotyping and implementation of best water management practices will help to mitigate climate effects and will enable significant water savings in the vineyard and winery. In this paper, we focused on the major vulnerabilities and opportunities of South European Mediterranean viticulture (e.g. in Portugal and Spain) and present a multi-level strategy (from plant to the consumer) to overcome region’s weaknesses and support strategies for adaptation to water scarcity, promote sustainable water use and minimize the environmental impact of the sector.
Resumo:
This paper examines the interactions between knowledge and power in the adoption of technologies central to municipal water supply plans, specifically investigating decisions in Progressive Era Chicago regarding water meters. The invention and introduction into use of the reliable water meter early in the Progressive Era allowed planners and engineers to gauge water use, and enabled communities willing to invest in the new infrastructure to allocate costs for provision of supply to consumers relative to use. In an era where efficiency was so prized and the role of technocratic expertise was increasing, Chicago’s continued failure to adopt metering (despite levels of per capita consumption nearly twice that of comparable cities and acknowledged levels of waste nearing half of system production) may indicate that the underlying characteristics of the city’s political system and its elite stymied the implementation of metering technologies as in Smith’s (1977) comparative study of nineteenth century armories. Perhaps, as with Flyvbjerg’s (1998) study of the city of Aalborg, the powerful know what they want and data will not interfere with their conclusions: if the data point to a solution other than what is desired, then it must be that the data are wrong. Alternatively, perhaps the technocrats failed adequately to communicate their findings in a language which the political elite could understand, with the failure lying in assumptions of scientific or technical literacy rather than with dissatisfaction in outcomes (Benveniste 1972). When examined through a historical institutionalist perspective, the case study of metering adoption lends itself to exploration of larger issues of knowledge and power in the planning process: what governs decisions regarding knowledge acquisition, how knowledge and power interact, whether the potential to improve knowledge leads to changes in action, and, whether the decision to overlook available knowledge has an impact on future decisions.
Resumo:
This PhD study examines whether water allocation becomes more productive when it is re-allocated from 'low' to 'high' efficient alternative uses in village irrigation systems (VISs) in Sri Lanka. Reservoir-based agriculture is a collective farming economic activity, which inter-sectoral allocation of water is assumed to be inefficient due to market imperfections and weak user rights. Furthermore, the available literature shows that a „head-tail syndrome. is the most common issue for intra-sectoral water management in „irrigation. agriculture. This research analyses the issue of water allocation by using primary data collected from two surveys of 460 rice farmers and 325 fish farming groups in two administrative districts in Sri Lanka. Technical efficiency estimates are undertaken for both rice farming and culture-based fisheries (CBF) production. The equi-marginal principle is applied for inter and intra-sectoral allocation of water. Welfare benefits of water re-allocation are measured through consumer surplus estimation. Based on these analyses, the overall findings of the thesis can be summarised as follows. The estimated mean technical efficiency (MTE) for rice farming is 73%. For CBF production, the estimated MTE is 33%. The technical efficiency distribution is skewed to the left for rice farming, while it skewed to the right for CBF production. The results show that technical efficiency of rice farming can be improved by formalising transferability of land ownership and, therefore, water user rights by enhancing the institutional capacity of Farmer Organisations (FOs). Other effective tools for improving technical efficiency of CBF production are strengthening group stability of CBF farmers, improving the accessibility of official consultation, and attracting independent investments. Inter-sectoral optimal allocation shows that the estimated inefficient volume of water in rice farming, which can be re-allocated for CBF production, is 32%. With the application of successive policy instruments (e.g., a community transferable quota system and promoting CBF activities), there is potential for a threefold increase in marginal value product (MVP) of total reservoir water in VISs. The existing intra-sectoral inefficient volume of water use in tail-end fields and head-end fields can potentially be removed by reducing water use by 10% and 23% respectively and re-allocating this to middle fields. This re-allocation may enable a twofold increase in MVP of water used in rice farming without reducing the existing rice output, but will require developing irrigation practices to facilitate this re-allocation. Finally, the total productivity of reservoir water can be increased by responsible village level institutions and primary level stakeholders (i.e., co-management) sharing responsibility of water management, while allowing market forces to guide the efficient re-allocation decisions. This PhD has demonstrated that instead of farmers allocating water between uses haphazardly, they can now base their decisions on efficient water use with a view to increasing water productivity. Such an approach, no doubt will enhance farmer incomes and community welfare.