979 resultados para Plant physiological components


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gall inducer Clusiamyia nitida Maia, 1996 (Diptera, Cecidomyiidae) often infests the shrub Clusia lanceolata (Camb.) (Clusiaceae) in the Neotropical vegetation of restinga of Rio de Janeiro State, Brazil. Leaves of Clusia lanceolata host up to 20 spheroid galls and show variation in their shape. We aimed to evaluate the effect of gall's intensity on leaves of Clusia lanceolata, and the extension of gall's impact on adjacent non-galled leaves. We analyzed the effect of the number of galls on leaf area, biomass, specific area and leaf appearance from 509 leaves of 14 individual plants. The results showed that differences of individual plants, pairs of leaves, and gall presence were responsible for more then 90% of variation on infested leaves. Variation on parasitic intensity level created differences in leaf response. Under moderate gall attack characterized by scattered galls on a leaf, the increase of the number of galls caused an increase of leaf biomass and area, and a decrease of specific area. The specific area was smaller also under high attack intensity, characterized by coalescent galls on a leaf. In those cases of extremely high parasitic intensity, galled leaves became deformed and the surface area was severely reduced. Leaf deformation due to gall attack led to early leaf abscission, indicated by the 90% of deformed leaves found in the youngest leaf pair of the branch. There was insufficient evidence that the impact of galls on leaf morpho-physiological parameters extended beyond the attacked leaves, because ungalled leaves did not change significantly when their opposite leaf had been galled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus) (Coleoptera, Curculionidae). Stored grains are subject to losses in quality nutritional value and in sanitation from the time they are stored to the time they are consumed. Botanical insecticides may offer an alternative solution for pest control. The objective was to test the insecticidal properties of the essential oils of Cymbopogon citratus (leaf), Zingiber officinale (root) and Mentha sp. (leaf). The efficacy of these oils was tested to control the rice weevil, S. oryzae, using hydrodistillation. Chemical analysis of the essential oils was carried out by gas chromatography. Major components of C. citratus were geranial (48%) and neral (31%), of Z. officinale were α-zingibereno (13%), geranial (16%), neral (10%) and α-farneseno (5%) and of Mentha sp. was menthol (92%). Bioassays were carried out by fumigation and topical application. In topical application assays, the essential oil of C. citratus had greater toxicity (LC50 0.027 µL mL-1) and shorter exposure time than the oils of the other two plants. After 24 h and 48 h, 70% and 100% mortality of S. oryzae occurred, respectively. In fumigation assays, essential oil of Z. officinale had a lower LC50 (1.18 µL cm-2) and 70% mortality after 24 h exposure. Therefore, we recommend the use of essential oils of C. citratus and Z. officinale to control the rice weevil S. oryzae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants respond to herbivore attack through a complex and variable system of defense, involving different physical barriers, toxic chemicals, and recruitment of natural enemies. To fully understand the relative role of each type of defense, their synergisms, redundancies, or antagonisms between traits, a variety of methods of enquiry, commonly used in plant physiology and ecology, have been employed. By overexpressing or silencing genes of interest, it is possible to understand the specific role of a particular defensive molecule or mode of action. We argue, however, that these types of experiments alone are not enough to holistically understand the physiological as well as ecological role of plant defenses. We thus advocate for the use of a combination of methods, including genetic modification, quantitative genetics, and phylogenetically controlled comparative studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants, like humans and other animals, also get sick, exhibit disease symptoms, and die. Plant diseases are caused by environmental stress, genetic or physiological disorders and infectious agents including viroids, viruses, bacteria and fungi. Plant pathology originated from the convergence of microbiology, botany and agronomy; its ultimate goal is the control of plant disease. Microbiologists have been attracted to this field of research because of the need for identification of the agents causing infectious diseases in economically important crops. In 1878—only two years after Pasteur and Koch had shown for the first time that anthrax in animals was caused by a bacteria—Burril, in the USA, discovered that the fire blight disease of apple and pear was also caused by a bacterium (nowadays known as Erwinia amylovora). In 1898, Beijerinck concluded that tobacco mosaic was caused by a “contagium vivum fluidum” which he called a virus. In 1971, Diener proved that a potato disease named potato spindle tuber was caused by infectious RNA which he called viroid

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thousands of chemical compounds enter the natural environment but many have unknown effects and consequences, in particular at low concentrations. This thesis work contributes to our understanding of pollution effects by using bacteria as test organisms. Bacteria are important for this question because some of them degrade and transform pollutants into less harmful compounds, but secondly because they themselves can be inhibited in their reproduction by exposure to toxic compounds. When inhibitory effects occur this may change the composition of the microbial com¬munity in the long run, leading to altered or diminished ecosystem services by those communities. As a result chemicals of anthropogenic origin may accumulate and per¬sist in the environment, and finally, affect higher organisms as well. In addition to acquiring basic understanding of pollutant effects at low concentrations on bacterial communities an applied goal of this thesis work was to develop bacteria-based tests to screen new organic chemicals for toxicity and biodégradation. In the first part of this work we developed a flow cytometry-based assay on SYT09 plus ethidium-bromide or propidium-iodide stained cells of Pseudomonas ûuorescens exposed or not to a variety of pollutants under oligotrophic growth conditions. Flow cytometry (FC) allows fast and accurate counting of bacterial cells under simul¬taneous assessment of their physiological state, in particular in combination with different fluorescent dyes. Here we employed FC and fluorescent dyes to monitor the effect that pollutants may exert on Pseudomonas ûuorescens SV3. First we designed an oligotrophic growth test, which enabled us to follow population growth at low densities (104 - 10 7 cells per ml) using 0.1 mM sodium acetate as carbon source. Cells in the oligotrophic milieu were then exposed or not to a variety of common pollutants, such as 2-chlorobiphenyl (2CBP), naphthalene (NAH), 4-chlorophenol (4CP), tetradecane (TD), mercury chloride (HgCl2) or benzene, in different dosages. Exposed culture samples were stained with SYT09 (green fluorescent dye binding nucleic acids, generally staining all cells) in combination with propidium iodide (PI) or ethidium bromide (EB), both dyes being membrane integrity indicators. We ob- served that most of the tested compounds decreased population growth in a dosage- dependent manner. SYT09/PI or SYT09/EB staining then revealed that chemical exposure led to arisal of subpopulations of live and injured or dead cells. By modeling population growth on the total cell numbers in population or only the subpopulation of live cells we inferred that even in stressed populations live cells multiply at rates no different to unexposed controls. The net decrease in population growth would thus be a consequence of more and more cells being not able to multiply at all, rather than all cells multiplying at slower rates. In addition, the proportion of injured cells correlated to the compound dosage. We concluded that the oligotrophic test may be useful to asses toxicity of unknown chemicals on a variety of model bacteria. Mul¬tiple tests can be run in parallel and effects are rapidly measured within a period of 8 hours. Interestingly, in the same exposure tests with P. fluorescens SV3 we observed that some chemicals which did not lead to a reduction of net population growth rates did cause measurable effects on live cells. This was mainly observed in cells within the live subpopulation as an increase of the EB fluorescence signal. We showed that SYT09/EB is a more useful combination of dyes than SYT09/PI because PI fluorescence tend to increase only when cells are effectively dead, but not so much in live cells (less then twofold). In contrast, EB geometric mean fluorescence in live cells increased up to eightfold after exposure to toxic compounds. All compounds even at the lowest concentration caused a measurable increase in EB geometric mean fluorescence especially after 2 h incubation time. This effect was found to be transient for cells exposed to 2CBP and 4CP, but chronic for cells incubated with TD and NAH (ultimately leading to cell death). In order to understand the mechanism underlying the observed effects we used known membrane or energy uncouplers. The pattern of EB signal increase in chemical-exposed populations resembled mostly that of EDTA, although EB fluorescence in EDTA-treated or pasteurized cells was even higher than after exposure to the four test chemicals. We conclude that the ability of cells to efflux EB under equilibrium conditions is an appropriate measure for the potential of a chemical to exert toxicity. Since most bacterial species possess efflux systems for EB that all require cellular energy, our test should be more widely relevant to infer toxicity effects of chemical exposure on the physiological status of the bacterial cell. To better understand the effect of toxicant exposure on efflux defense systems, we studied 2-hydroxybiphenyl toxicity to Pseudomonas azeiaica HBP1. We showed that 2-HBP exerts toxicity even to P. azelaica HBP1, but only at concentrations higher than 0.5 mM. Above this concentration transient loss of membrane polarization and integrity occurred, which we conclude from staining of growing cells with fluorescent dyes. Cells finally recover and resume growth on 2HBP. The high resistance of P. azelaica HBP1 to 2-HBP was found to be the result of an efficient MexABOprM- type efflux pump system counteracting passive influx of this compound into the membrane and cellular interior. Mutants with disrupted mexA, mexB and oprM genes did no longer grow on 2-HBP at concentrations above 100 μΜ, whereas below this concentration we found 2-HBP-concentration dependent decrease of growth rate. The MexAB-OprM system in P. azeiaica HBP1 is indeed an efflux pump for ethidium bromide as well. By introducing gfp reporter fusions responsive to intracellular 2- HBP concentrations into HBP1 wild-type or the mutants we demonstrated that 2HBP enters into the cells in a similar way. In contrast, the reporter system in the wild-type cells does not react to 2-HBP at an outside concentration of 2.4 μΜ, whereas in mutant cells it does. This suggests that wild-type cells pump 2-HBP to the outside very effectively preventing accumulation of 2-HBP. 2HBP metabolism, therefore, is not efficient enough to lower the intracellular concentration and prevent toxicity. We conclude that P. azelaica HBP1 resistance to 2-HBP is mainly due to an efficient efflux system and that 2HBP in high concentrations exerts narcotic effects on the bacterial membrane. In the part of this thesis, we investigated the possibilities of bacteria to degrade pollutants at low concentrations (1 mg per L and below). As test components we used 2-hydroxybiphenyl, antibiotics and a variety of fragrances, many of which are known to be difficult to biodegrade. By using accurate counting of low numbers of bacterial cells we could demonstrate that specific growth on these compounds is possible. We demonstrated the accuracy of FC counting at low cell numbers (down to 103 bacterial cells per ml). Then we tested whether bacterial population growth could be specifically monitored at the expense of low substrate concentrations, us¬ing P. azelaica HBP1. A perfect relationship was found between growth rate, yield and 2-HBP concentrations in the range of 0.1 up to 5 mg per L. Mixing P. azelaica within sludge, however, suggested that growth yields in a mixed community can be much lower than in pure culture, perhaps because of loss of metabolic intermediates. We then isolated new strains from activated sludge using 2-HBP or antibiotics (Nal, AMP, SMX) at low concentrations (0.1-1 mg per L) as sole carbon and energy sub¬strate and PAO microdishes. The purified strains were then examined for growth on their respective substrate, which interestingly, showed that all strains can not with¬stand higher than 1 or 10 mg per L concentrations of target substrate. Thus, bacteria must exist that contribute to compound degradation at low pollutant concentrations but are inhibited at higher concentrations. Finally we tested whether specific biomass growth (in number of cells) at the expense of pollutants can also be detected with communities as starting material. Hereto, we focused on a number of fragrance chemicals and measured community biomass increase by flow cytometry cell counting on two distinct starter communities: (i) diluted Lake Geneva water, and dilute activated sludge from a wastewater treatment plant. We observed that most of the test compounds indeed resulted in significant biomass increase in the starter community compared to a no-carbon added control, but activated sludge and lake Geneva water strongly differed (almost mutually ex¬clusive) in their capacity to degrade the test chemicals. In two cases for activated sludge the same type of microbial community developed upon compound exposure, as concluded from transcription fragment length polymorphism analysis on community purified and PCR amplified 16S rRNA gene fragments. To properly test compound biodegradability it is thus important to use starter communities of different origin. We conclude that FC counting can be a valuable tool to screen chemicals for their biodegradability and toxicity. - Des milliers de produits chimiques sont libérés dans l'environnement mais beaucoup ont des effets inconnus, en particulier à basses concentrations. Ce travail de thèse contribue à notre comprehension des effets de la pollution en utilisant des bacteries comme des organismes-tests. Les bacteries sont importantes pour etudier cette ques¬tion car certaines d'entre elles peuvent degrader ou transformer les polluants, mais également parce qu'elles-mmes peuvent tre inhibees dans leur reproduction après avoit ete exposees à ces composes toxiques. Quand des effets inhibiteurs ont lieu, la composition de la communauté microbienne peut tre changee à long terme, ce qui mène à une reduction du service d'ecosystème offert par ces communautés. En consequence, après leur liberation dans l'environnement, les produits chimiques d'origine anthropogenique peuvent soit s'y accumuler et per¬sister, exerant ainsi des effets encore inconnus sur les organismes vivants. En plus d'acquérir des connaissances de base sur les effets des polluants à basses concentra¬tions sur les communautés microbiennes, un but applique de cette thèse était de développer des tests bases sur les bacteries afin d'identifier de nouveau composes pour leur toxicité ou leur biodégradation. Dans la première partie de ce travail, nous avons developpe un test base sur la cytometrie de flux (FC) sur des cellules de Pseudomonas fluorescens colorees par du bromure d'ethidium ou de l'iodure de propidium et exposees ou non à une palette de polluants sous des conditions de croissance oligotrophique. La cytometrie de flux est une technique qui connaît de nombreuses applications dans la microbiologie environ¬nementale. Cela est principalement du au fait qu'elle permet un comptage rapide et precis ainsi que l'évaluation de l'état physiologique, en particulier lorsqu'elle est combinée h des colorations fluorescentes. Ici, nous avons utilise la technique FC et des colorants fluorescents afin de mesurer l'effet que peuvent exercer certains pollu¬ants sur Pseudomonas ûuorescens SV3 . D'abord nous avons conu des tests oligo- trophiques qui nous permettent de suivre la croissance complète de cellules en culture h des densites faibles (104 -10 7 cellules par ml), sur de l'acetate de sodium à 0.1 mM, en presence ou absence de produits chimiques (2-chlorobiphenyl (2CBP), naphthalène (NAH), 4-chlorophenol (4CP), tetradecane (TD), chlorure de mercure(II) (HgCl2)) à différentes concentrations. Afin de montrer le devenir des bacteries tant au niveau de la cellule individuelle que celui de la population globale, après exposition à des series de composes chimiques, nous avons compte les cellules colorees avec du SYT09 (col¬orant fluorescent vert des acides nucléiques pour la discrimination des cellules par rapport au bruit de fond) en combinaison avec l'iodure de propidium (PI) ou le bromure d'ethidium (EB), indicateurs de l'intégrité de la membrane cellulaire avec FC. Nous avons observe que de nombreux composes testes avaient un effet sur la croissance bacterienne, resultant en une baisse du taux de reproduction de la pop¬ulation. En outre, la double coloration que nous avons utilisee dans cette etude SYT09/PI ou SYT09/EB a montre que les produits chimiques testes induisaient une reponse heterogène des cellules dans la population, divisant celle-ci en sous- populations "saine", "endommagee" ou "morte". Les nombres de cellules à partir du comptage et de la proportion de celles "saines" et "endommagees/mortes" ont ensuite ete utilises pour modeliser la croissance de P. ûuorescens SV3 exposee aux produits chimiques. La reduction nette dans la croissance de population est une consequence du fait que de plus en plus de cellules sont incapables de se reproduire, plutt que du fait d'une croissance plus lente de l'ensemble de la population. De plus, la proportion de cellules endommagees est correllee au dosage du compose chimique. Les résultats obtenus nous ont permis de conclure que le test oligotrophique que nous avons developpe peut tre utilise pour l'évaluation de la toxicité de produits chimiques sur différents modèles bacteriens. Des tests multiples peuvent tre lances en parallèle et les effets sont mesures en l'espace de huit heures. Par ailleurs, nous en déduisons que les produits chimiques exercént un effet sur la croissance des cellules de P. ûuorescens SV3, qui est heterogène parmi les cellules dans la population et depend du produit chimique. Il est intéressant de noter que dans les mmes tests d'exposition avec P. ûuorescens SV3, nous avons observe que certains composes qui n'ont pas conduit à une reduction du taux de la croissance nette de la population, ont cause des effets mesurables sur les cellule saines. Ceci a ete essentiellement observe dans la portion "saine" des cellules en tant qu'augmentation du signal de la fluorescence de 1ΈΒ. D'abord nous avons montre que SYT09/EB était une com¬binaison de colorants plus utile que celle de SYT09/PI parce que la fluorescence du PI a tendance à augmenter uniquement lorsque les cellules sont effectivement mortes, et non pas dans les cellules saines (moins de deux fois plus). Par opposi¬tion, la fluorescence moyenne de l'EB dans les cellules saines augmente jusqu'à huit fois plus après exposition aux composes toxiques. Tous les composes, mme aux plus basses concentrations, induisent une augmentation mesurable de la fluorescence moy¬enne de 1ΈΒ, plus particulièrement après deux heures d'incubation. Cet effet s'est revele tre transitoire pour les cellules exposees aux 2CNP et 4CP, mais est chro¬nique pour les cellules incubees avec le TD et le NAH (entranant la mort cellulaire). Afin de comprendre les mécanismes qui sous-tendent les effets observes, nous avons utilise des decoupleurs d'energie ou de membrane. L'augmentation du signal EB dans les populations causee par des produits chimiques ressemblait à celle exerce par le chelateur des ions divalents EDTA. Cependant, les intensités du signal EB des cellules exposees aux produits chimiques testees n'ont jamais atteint les valeurs des cellules traitees avec l'EDTA ou pasteurises. Nous en concluons que le test oli- gotrophique utilisant la coloration (SYT09/)EB des cellules exposees ou non à un produit chimique est utile afin d'evaluer l'effet toxique exerce par les polluants sur la physiologie bacterienne. Afin de mieux comprendre la reaction d'un système de defense par pompe à efflux après exposition à une toxine, nous avons étudié la toxicité du 2-hydroxybiphenyl (2-HBP) sur Pseudomonas azeiaica HBP1. Nous avons montre que le 2-HBP exerce une toxicité mme sur HBP1, mais uniquement à des concentrations supérieures à 0.5 mM. Au-dessus de cette concentration, des pertes transitoires d'intégrité et de polarization membranaire ont lieu, comme cela nous a ete montre par coloration des cellules en croissance. Les cellules sont finalement capables de se rétablir et de reprendre leur croissance sur 2-HBP. La forte resistance de P. azeiaica HBP1 h 2-HBP physiologie bacterienne s'est revele tre le résultat d'un système de pompe h efflux de type MexABOprM qui contre-balance l'influx passif de ce compose h travers la membrane. Nous avons montre, en construisant des mutants avec des insertions dans les gènes mexA, mexB and oprM et des fusions avec le gène rapporteur gfp, que l'altération de n'importe quelle partie du système d'efflux conduisait à accroître l'accumulation de 2-HBP dans la cellule, en comparaison avec la souche sauvage HBP1, provoquant une diminution de la resistance au 2-HBP ainsi qu'une baisse du taux de reproduction des cellules. Des systèmes d'efflux similaires sont répandus chez de nombreuses espèces bactériennes. Ils seraient responsables de la resistance aux produits chimiques tels que les colorants fluorescents (bromure d'ethidium) et des antibiotiques. Nous concluons que la resistance de P. azelaica HBP1 à 2-HBP est principalement due à un système d'efflux efficace et que 2-HBP, à des concentrations elevees, exerce un effet deletère sur la membrane bacterienne. En se basant sur le comptage des cellules avec la FC, nous avons developpe ensuite une methode pour evaluer la biodegradabilite de polluants tels que le 2-HBP ainsi que les antibiotiques (acide nalidixique (Nal), ampicilline (AMP) ou sulfamethoxazole (SMX)) à de faibles concentrations lmg par L et moins), par le suivi de la croissance spécifique sur le compose de cultures microbiennes pures et mixtes. En utilisant un comptage precis de faibles quantités de cellules nous avons pu demontrer que la croissance spécifique sur ces composes est possible. Nous avons pu illustrer la precision du comptage par cytometrie de flux à faible quantité de cellules (jusqu'à 10 3 cellules par ml). Ensuite, nous avons teste s'il était possible de suivre dynamiquement la croissance de la population de cellules sur faibles concentrations de substrats, en utilisant P. azelaica HBP1. Une relation parfaite a ete trouvee entre le taux de croissance, le rendement et les concentrations de 2-HBP (entre 0.1 et 5 mg par L). En mélangeant HBP1 à de la boue active, nous avons pu montrer que le rendement en communauté mixtes pouvait tre bien inférieur qu'en culture pure. Ceci étant peut tre le résultat d'une perte d'intermédiaires métaboliques. Nous avons ensuite isole de nouvelles souches à partir de la boue active en utilisant le 2-HBP ou des antibiotiques (Nal, AMP, SMX) h basses concentrations (0.1-1 mg par L) comme seules sources de carbone et d'energie. En combinaison avec ceci, nous avons également utilise des microplaques PAO. Les souches purifiees ont ensuite ete examinees pour leurs croissances sur leurs substrats respectifs. De faon intéressante, toutes ces souches ont montre qu'elles ne pouvaient pas survivre à des concentrations de substrats supérieures à 1 ou 10 mg par L. Ainsi, il existe des bacteries qui contribuent à la degradation de composes à basses concentrations de polluant mais sont inhibes lorsque ces concentrations deviennent plus hautes. Finalement, nous avons cherche à savoir s'il est possible de detecter une croissance spécifique à une biomasse au depend d'un polluant, en partant d'une communauté microbienne. Ainsi, nous nous sommes concentre sur certains composes et avons mesure l'augmentation de la biomasse d'une communauté grce à la cytometrie de flux. Nous avons compte deux communautés de depart distinctes: (i) une dilution d'eau du Lac Léman, et une dilution de boue active d'une station d'épuration. Nous avons observe que la plupart des composes testes ont entrane une augmentation de la biomasse de depart par rapport au control sans addition de source de carbone. Néanmoins, les échantillons du lac Léman et de la station d'épuration différaient largement (s'excluant mutuellement l'un l'autre) dans leur capacité à degrader les composes chimiques. Dans deux cas provenant de la station d'épuration, le mme type de communauté microbienne s'est developpe après exposition aux composes, comme l'a démontré l'analyse TRFLP sur les fragments d'ARN 16S purifie de la communauté et amplifie par PCR. Afin de tester correctement la biodegradabilite d'un compose, il est donc important d'utiliser des communautés de depart de différentes origines Nous en concluons que le comptage par cytometrie de flux peut tre un outil de grande utilité pour mettre en valeur la biodegradabillite et la toxicité des composes chimiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nutritional state of the pineapple plant has a large effect on plant growth, on fruit production, and fruit quality. The aim of this study was to assess the uptake, accumulation, and export of nutrients by the irrigated 'Vitória' pineapple plant during and at the end of its development. A randomized block statistical design with four replications was used. The treatments were defined by different times of plant collection: at 270, 330, 390, 450, 510, 570, 690, 750, and 810 days after planting (DAP). The collected plants were separated into the following components: leaves, stem, roots, fruit, and slips for determination of fresh and dry matter weight at 65 ºC. After drying, the plant components were ground for characterization of the composition and content of nutrients taken up and exported by the pineapple plant. The results were subjected to analysis of variance, and non-linear regression models were fitted for the significant differences identified by the F test (p<0.01). The leaves and the stem were the plant components that showed the greatest accumulation of nutrients. For production of 72 t ha-1 of fruit, the macronutrient accumulation in the 'Vitória' pineapple exhibited the following decreasing order: K > N > S > Ca > Mg > P, which corresponded to 898, 452, 134, 129, 126, and 107 kg ha-1, respectively, of total accumulation. The export of macronutrients by the pineapple fruit was in the following decreasing order: K > N > S > Ca > P > Mg, which was equivalent to 18, 17, 11, 8, 8, and 5 %, respectively, of the total accumulated by the pineapple. The 'Vitória' pineapple plant exported 78 kg ha-1 of N, 8 kg ha-1 of P, 164 kg ha-1 of K, 14 kg ha-1 of S, 10 kg ha-1 of Ca, and 6 kg ha-1 of Mg by the fruit. The nutrient content exported by the fruits represent important components of nutrient extraction from the soil, which need to be restored, while the nutrients contained in the leaves, stems and roots can be incorporated in the soil within a program of recycling of crop residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N), in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD) chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland) adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA) production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa) as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the reference strainAzospirillum brasilense, Ab-V5. The results indicate the potential of T. spicatus as native plant source of plant growth promoting bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Knowledge of the terms (or processes) of the soil water balance equation or simply the components of the soil water balance over the cycle of an agricultural crop is essential for soil and water management. Thus, the aim of this study was to analyze these components in a Cambissolo Háplico (Haplocambids) growing muskmelon (Cucumis melo L.) under drip irrigation, with covered and uncovered soil, in the municipality of Baraúna, State of Rio Grande do Norte, Brazil (05º 04’ 48” S, 37º 37’ 00” W). Muskmelon, variety AF-646, was cultivated in a flat experimental area (20 × 50 m). The crop was spaced at 2.00 m between rows and 0.35 m between plants, in a total of ten 50-m-long plant rows. At points corresponding to ⅓ and ⅔ of each plant row, four tensiometers (at a distance of 0.1 m from each other) were set up at the depths of 0.1, 0.2, 0.3, and 0.4 m, adjacent to the irrigation line (0.1 m from the plant row), between two selected plants. Five random plant rows were mulched using dry leaves of banana (Musa sp.) along the drip line, forming a 0.5-m-wide strip, which covered an area of 25 m2 per of plant row with covered soil. In the other five rows, there was no covering. Thus, the experiment consisted of two treatments, with 10 replicates, in four phenological stages: initial (7-22 DAS - days after sowing), growing (22-40 DAS), fruiting (40-58 DAS) and maturation (58-70 DAS). Rainfall was measured with a rain gauge and water storage was estimated by the trapezoidal method, based on tensiometer readings and soil water retention curves. For soil water flux densities at 0.3 m, the tensiometers at the depths of 0.2, 0.3, and 0.4 m were considered; the tensiometer at 0.3 m was used to estimate soil water content from the soil water retention curve at this depth, and the other two to calculate the total potential gradient. Flux densities were calculated through use of the Darcy-Buckingham equation, with hydraulic conductivity determined by the instantaneous profile method. Crop actual evapotranspiration was calculated as the unknown of the soil water balance equation. The soil water balance method is effective in estimating the actual evapotranspiration of irrigated muskmelon; there was no significant effect of soil coverage on capillary rise, internal drainage, crop actual evapotranspiration, and muskmelon yield compared with the uncovered soil; the transport of water caused by evaporation in the uncovered soil was controlled by the break in capillarity at the soil-atmosphere interface, which caused similar water dynamics for both management practices applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the stress-induced effects caused by wounding under a new perspective, a metabolomic strategy based on HPLC-MS has been devised for the model plant Arabidopsis thaliana. To detect induced metabolites and precisely localise these compounds among the numerous constitutive metabolites, HPLC-MS analyses were performed in a two-step strategy. In a first step, rapid direct TOF-MS measurements of the crude leaf extract were performed with a ballistic gradient on a short LC-column. The HPLC-MS data were investigated by multivariate analysis as total mass spectra (TMS). Principal components analysis (PCA) and hierarchical cluster analysis (HCA) on principal coordinates were combined for data treatment. PCA and HCA demonstrated a clear clustering of plant specimens selecting the highest discriminating ions given by the complete data analysis, leading to the specific detection of discrete-induced ions (m/z values). Furthermore, pool constitution with plants of homogeneous behaviour was achieved for confirmatory analysis. In this second step, long high-resolution LC profilings on an UPLC-TOF-MS system were used on pooled samples. This allowed to precisely localise the putative biological marker induced by wounding and by specific extraction of accurate m/z values detected in the screening procedure with the TMS spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant growth is tightly controlled through the integration of environmental cues with the physiological status of the seedling. A recent study now proposes a model explaining how the plant hormone ethylene triggers opposite growth responses depending on the light environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.