974 resultados para Plackett-burman designs
Resumo:
This paper presents the evaluation in power consumption of a clocking technique for pipelined designs. The technique shows a dynamic power consumption saving of around 30% over a conventional global clocking mechanism. The results were obtained from a series of experiments of a systolic circuit implemented in Virtex-II devices. The conversion from a global-clocked pipelined design to the proposed technique is straightforward, preserving the original datapath design. The savings can be used immediately either as a power reduction benefit or to increase the frequency of operation of a design for the same power consumption.
Resumo:
This paper presents a simple clocking technique to migrate classical synchronous pipelined designs to a synchronous functional-equivalent alternative system in the context of FPGAs. When the new pipelined design runs at the same throughput of the original design, around 30% better mW/MHz ratio was observed in Virtex-based FPGA circuits. The evaluation is done using a simple but representative and practical systolic design as an example. The technique in essence is a simple replacement of the clocking mechanism for the pipe-storage elements; however no extra design effort is needed. The results show that the proposed technique allows immediate power and area-time savings of existing designs rather than exploring potential benefits by a new logic design to the problem using the classic pipeline clocking mechanism.
Resumo:
In recent years, there has been a drive to save development costs and shorten time-to-market of new therapies. Research into novel trial designs to facilitate this goal has led to, amongst other approaches, the development of methodology for seamless phase II/III designs. Such designs allow treatment or dose selection at an interim analysis and comparative evaluation of efficacy with control, in the same study. Methods have gained much attention because of their potential advantages compared to conventional drug development programmes with separate trials for individual phases. In this article, we review the various approaches to seamless phase II/III designs based upon the group-sequential approach, the combination test approach and the adaptive Dunnett method. The objective of this article is to describe the approaches in a unified framework and highlight their similarities and differences to allow choice of an appropriate methodology by a trialist considering conducting such a trial.
Resumo:
Hybrid multiprocessor architectures which combine re-configurable computing and multiprocessors on a chip are being proposed to transcend the performance of standard multi-core parallel systems. Both fine-grained and coarse-grained parallel algorithm implementations are feasible in such hybrid frameworks. A compositional strategy for designing fine-grained multi-phase regular processor arrays to target hybrid architectures is presented in this paper. The method is based on deriving component designs using classical regular array techniques and composing the components into a unified global design. Effective designs with phase-changes and data routing at run-time are characteristics of these designs. In order to describe the data transfer between phases, the concept of communication domain is introduced so that the producer–consumer relationship arising from multi-phase computation can be treated in a unified way as a data routing phase. This technique is applied to derive new designs of multi-phase regular arrays with different dataflow between phases of computation.
Resumo:
Background Despite the promising benefits of adaptive designs (ADs), their routine use, especially in confirmatory trials, is lagging behind the prominence given to them in the statistical literature. Much of the previous research to understand barriers and potential facilitators to the use of ADs has been driven from a pharmaceutical drug development perspective, with little focus on trials in the public sector. In this paper, we explore key stakeholders’ experiences, perceptions and views on barriers and facilitators to the use of ADs in publicly funded confirmatory trials. Methods Semi-structured, in-depth interviews of key stakeholders in clinical trials research (CTU directors, funding board and panel members, statisticians, regulators, chief investigators, data monitoring committee members and health economists) were conducted through telephone or face-to-face sessions, predominantly in the UK. We purposively selected participants sequentially to optimise maximum variation in views and experiences. We employed the framework approach to analyse the qualitative data. Results We interviewed 27 participants. We found some of the perceived barriers to be: lack of knowledge and experience coupled with paucity of case studies, lack of applied training, degree of reluctance to use ADs, lack of bridge funding and time to support design work, lack of statistical expertise, some anxiety about the impact of early trial stopping on researchers’ employment contracts, lack of understanding of acceptable scope of ADs and when ADs are appropriate, and statistical and practical complexities. Reluctance to use ADs seemed to be influenced by: therapeutic area, unfamiliarity, concerns about their robustness in decision-making and acceptability of findings to change practice, perceived complexities and proposed type of AD, among others. Conclusions There are still considerable multifaceted, individual and organisational obstacles to be addressed to improve uptake, and successful implementation of ADs when appropriate. Nevertheless, inferred positive change in attitudes and receptiveness towards the appropriate use of ADs by public funders are supportive and are a stepping stone for the future utilisation of ADs by researchers.
Resumo:
This paper proposes a set of well defined steps to design functional verification monitors intended to verify Floating Point Units (FPU) described in HDL. The first step consists on defining the input and output domain coverage. Next, the corner cases are defined. Finally, an already verified reference model is used in order to test the correctness of the Device Under Verification (DUV). As a case study a monitor for an IEEE754-2008 compliant design is implemented. This monitor is built to be easily instantiated into verification frameworks such as OVM. Two different designs were verified reaching complete input coverage and successful compliant results.
Resumo:
Background Appropriately conducted adaptive designs (ADs) offer many potential advantages over conventional trials. They make better use of accruing data, potentially saving time, trial participants, and limited resources compared to conventional, fixed sample size designs. However, one can argue that ADs are not implemented as often as they should be, particularly in publicly funded confirmatory trials. This study explored barriers, concerns, and potential facilitators to the appropriate use of ADs in confirmatory trials among key stakeholders. Methods We conducted three cross-sectional, online parallel surveys between November 2014 and January 2015. The surveys were based upon findings drawn from in-depth interviews of key research stakeholders, predominantly in the UK, and targeted Clinical Trials Units (CTUs), public funders, and private sector organisations. Response rates were as follows: 30(55 %) UK CTUs, 17(68 %) private sector, and 86(41 %) public funders. A Rating Scale Model was used to rank barriers and concerns in order of perceived importance for prioritisation. Results Top-ranked barriers included the lack of bridge funding accessible to UK CTUs to support the design of ADs, limited practical implementation knowledge, preference for traditional mainstream designs, difficulties in marketing ADs to key stakeholders, time constraints to support ADs relative to competing priorities, lack of applied training, and insufficient access to case studies of undertaken ADs to facilitate practical learning and successful implementation. Associated practical complexities and inadequate data management infrastructure to support ADs were reported as more pronounced in the private sector. For funders of public research, the inadequate description of the rationale, scope, and decision-making criteria to guide the planned AD in grant proposals by researchers were all viewed as major obstacles. Conclusions There are still persistent and important perceptions of individual and organisational obstacles hampering the use of ADs in confirmatory trials research. Stakeholder perceptions about barriers are largely consistent across sectors, with a few exceptions that reflect differences in organisations’ funding structures, experiences and characterisation of study interventions. Most barriers appear connected to a lack of practical implementation knowledge and applied training, and limited access to case studies to facilitate practical learning. Keywords: Adaptive designs; flexible designs; barriers; surveys; confirmatory trials; Phase 3; clinical trials; early stopping; interim analyses
Resumo:
Recruitment of patients to a clinical trial usually occurs over a period of time, resulting in the steady accumulation of data throughout the trial's duration. Yet, according to traditional statistical methods, the sample size of the trial should be determined in advance, and data collected on all subjects before analysis proceeds. For ethical and economic reasons, the technique of sequential testing has been developed to enable the examination of data at a series of interim analyses. The aim is to stop recruitment to the study as soon as there is sufficient evidence to reach a firm conclusion. In this paper we present the advantages and disadvantages of conducting interim analyses in phase III clinical trials, together with the key steps to enable the successful implementation of sequential methods in this setting. Examples are given of completed trials, which have been carried out sequentially, and references to relevant literature and software are provided.
Resumo:
Relaxed conditions for stability of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed methods provide better or at least the same results of the methods presented in the literature. Numerical results exemplify this fact. These results are also used for fuzzy regulators and observers designs. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by linear matrix inequalities, that can be solved efficiently using convex programming techniques. The specification of the decay rate, constrains on control input and output are also discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)