972 resultados para Phytoplankton growth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2− and NO3−. NH4+ was assimilated at 1.82–49.12 nmol N L−1 h−1 and regenerated at 3.46–14.60 nmol N L−1 h−1; NO2− was assimilated at 0–2.08 nmol N L−1 h−1 and regenerated at 0.01–1.85 nmol N L−1 h−1; NO3− was assimilated at 0.67–18.75 nmol N L−1 h−1 and regenerated at 0.05–28.97 nmol N L−1 h−1. Observations implied that these processes were closely coupled at the regional scale and nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol L−1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions where neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of 5 further stations, Ocean Acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay dataset of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location and that a mechanistic understanding of how NH4+ oxidation, NH4+ regeneration and N2O production responded to OA could be developed. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the watermasses present. Surface Zn concentrations are among the lowest reported for theworld’s oceans (<50 pM). A strong Zn-Si linear relationshipwas observed (Zn (nM)= 0.065 Si (μM), r2=0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2− and NO3−. NH4+ was assimilated at 1.82–49.12 nmol N L−1 h−1 and regenerated at 3.46–14.60 nmol N L−1 h−1; NO2− was assimilated at 0–2.08 nmol N L−1 h−1 and regenerated at 0.01–1.85 nmol N L−1 h−1; NO3− was assimilated at 0.67–18.75 nmol N L−1 h−1 and regenerated at 0.05–28.97 nmol N L−1 h−1. Observations implied that these processes were closely coupled at the regional scale and nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol L−1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions where neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of 5 further stations, Ocean Acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay dataset of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location and that a mechanistic understanding of how NH4+ oxidation, NH4+ regeneration and N2O production responded to OA could be developed. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2 and NO3. NH4+ was assimilated at 1.82–49.12 nmol N L−1 h−1 and regenerated at 3.46–14.60 nmol N L−1 h−1; NO2- was assimilated at 0–2.08 nmol N L−1 h−1 and regenerated at 0.01–1.85 nmol N L−1 h−1; NO3 was assimilated at 0.67–18.75 nmol N L−1 h−1 and regenerated at 0.05–28.97 nmol N L−1 h−1. Observations implied that these processes were closely coupled at the regional scale and that nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol L−1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions were neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of five further stations, ocean acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay data set of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location. Our objective was to develop a mechanistic understanding of how NH4+ regeneration, NH4+ oxidation and N2O production responded to OA. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i) synthesize findings from these recent studies; (ii) report the results of a new remote sensing study of ash fertilization; and (iii) calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with <0.1 mg chlorophyll-a m-3, and less than a factor of 2 for systems with >0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean) algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Southern Ocean, there is increasing evidence that seasonal to subseasonal temporal scales, and meso- to submesoscales play an important role in understanding the sensitivity of ocean primary productivity to climate change. This drives the need for a high-resolution approach to re- solving biogeochemical processes. In this study, 5.5 months of continuous, high-resolution (3 h, 2 km horizontal resolution) glider data from spring to summer in the Atlantic Subantarctic Zone is used to investigate: (i) the mechanisms that drive bloom initiation and high growth rates in the region and (ii) the seasonal evolution of water column production and respiration. Bloom initiation dates were analysed in the context of upper ocean boundary layer physics highlighting sensitivities of different bloom detection methods to different environmental processes. Model results show that in early spring (September to mid-November) increased rates of net community production (NCP) are strongly affected by meso- to submesoscale features. In late spring/early summer (late-November to mid-December) seasonal shoaling of the mixed layer drives a more spatially homogenous bloom with maximum rates of NCP and chlorophyll biomass. A comparison of biomass accumulation rates with a study in the North Atlantic highlights the sensitivity of phytoplankton growth to fine-scale dynamics and emphasizes the need to sample the ocean at high resolution to accurately resolve phytoplankton phenology and improve our ability to estimate the sensitivity of the biological carbon pump to climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compreensão dos impactes das alterações climáticas é fundamental para a gestão a longo do prazo dos ecossistemas estuarinos. Esta compreensão só poderá ser efectiva considerando a variabilidade climática natural e o papel relativo das intervenções antropogénicas nestes ecossistemas. Assim, a presente dissertação analisa a influência das alterações climáticas e pressões antropogénicas na qualidade da água e dinâmica ecológica da Ria de Aveiro com base numa abordagem integrada, que combinou a análise de séries temporais dos últimos 25 anos e a modelação numérica de elevada resolução de cenários futuros de alterações climáticas e intervenções antropogénicas. A componente de modelação de qualidade da água e ecológica foi melhorada a vários níveis. A análise de sensibilidade do modelo 3D hidrodinâmicoecológico ECO-SELFE aplicado à Ria de Aveiro e a revisão das constantes de semi-saturação para absorção de nutrientes pelo fitoplâncton contribuíram para a precisão e robustez das aplicações. A concentração do fitoplâncton foi significativamente influenciada pelas taxas de crescimento do fitoplâncton e de mortalidade e excreção do zooplâncton, e apresentou uma sensibilidade reduzida à variação das constantes de semi-saturação na gama identificada para as diatomáceas. O acoplamento do ECO-SELFE a um modelo de campo próximo e a integração do ciclo do oxigénio aumentaram a sua capacidade de representação dos processos e das escalas espaciais relevantes. A validação do ECO-SELFE foi realizada com base num conjunto de campanhas específicas realizadas no canal de Mira. Os padrões espaciais e temporais observados para as várias variáveis (clorofila a, nutrientes, oxigénio dissolvido, salinidade, temperatura da água, correntes e níveis) foram simulados com erros menores ou semelhantes aos obtidos neste tipo de aplicações. A análise dos padrões de variabilidade espacial e temporal da qualidade da água e ecológica na Ria de Aveiro a diferentes escalas, efectuada com base nos dados históricos de 1985 a 2010 complementados pelas campanhas realizadas, sugeriu uma influência combinada da variabilidade climática e das acções antropogénicas. Os cenários futuros de alterações climáticas e intervenções antropogénicas simulados evidenciaram uma influência mais significativa das alterações climáticas quando comparadas com os efeitos das acções antropogénicas analisadas. As variações mais significativas são previstas para os cenários de subida do nível do mar, seguidos dos cenários de alterações dos regimes hidrológicos, evidenciando o papel da circulação (maré e caudal fluvial) no estabelecimento da qualidade da água e dinâmica ecológica na laguna. Para os cenários de subida do nível do mar são previstos decréscimos significativos da clorofila a e dos nutrientes a jusante e nas zonas intermédias do canal, e um aumento significativo da salinidade a montante. Estas alterações poderão favorecer modificações da composição e distribuição das comunidades, afectando a cadeia alimentar e causando uma progressão para montante de espécies marinhas. Os resultados sugerem ainda que os efeitos poderão ser mais significativos em estuários pouco profundos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de Doutoramento, Física, 17 de Dezembro de 2013, Universidade dos Açores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los resultados de investigación sobre producción primaria dentro del alcance interdisciplinario del ambiente marino frente a la costa peruana incluyen estudios nacionales, extranjeros y de investigación conjunta a través de proyectos internacionales (1960-2000). La circulación en la costa peruana es dominada por una corriente hacia el ecuador en una capa de 20 a 50 m. La estructura de plumas del afloramiento se presenta en cada área y podría ser la clave para el desarrollo de cadenas cortas y productivas: fitoplancton peces clupeidos. La distribución de nutrientes sigue la pluma de temperatura, con altos valores en la costa y bajos lejos de la costa; la clorofila muestra mínimos valores cerca de la costa (10 mn) que se incrementa al alejarse. El crecimiento del fitoplancton en aguas peruanas, varía de 0,5 a 0,8 d/d. En aguas recién afloradas el crecimiento es limitado por falta de “condicionamiento biológico” y de compuestos orgánicos (15°S). Estos tipos de agua pueden estar relacionados con las “aguas azules” de altos nutrientes y pobre fitoplancton con células de pequeño tamaño (clorofila <2 μg/L) y con “aguas marrones” con denso fitoplancton, (clorofila >5 μg/L), mayor diversidad y con células de diámetro >5μ. La media de producción primaria fue 3 gC/m2/d (1960-1985), comparable a la mayoría de estudios en los cuales varía entre 3 y 4 gC/m2/d en la franja costera, el último valor es altamente variable en espacio, siendo más frecuente dentro de 10 km. Valores mayores de 12 gC/m2/d se encontraron en el afloramiento de Chimbote. El Niño, La Niña y fases del ENSO, afectan la producción primaria. Las temperaturas bajas originan cambios en la composición química del fitoplancton y reducen el índice de productividad mgC/mgclor-a/d que también es atribuido a limitaciones de luz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study an attempt has been made to understand the microzooplankton community along the easr coast of India. Most of the earlier studies projected Bay of Bengal as an oligotrophic system where phytoplankton growth is limited by a number of factors among which nutrients are the foremost. Hence it is logical to consider that the most of the primary production in the Bay of Bengal could be contributed by small sized phytoplankton harnessing the available resources, which in turn can be utilized effiency by the microzooplankton only. Hence microzooplankton could play in transferring primary organic carbon to higher tropic levels in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Top-down (grazing) and bottom-up (nutrient, light) controls are important in freshwater ecosystems regulation. Relative importance of these factors could change in space and time, but in tropical lakes bottom-up regulation has to been appointed as more influent. Present study aimed to test the hypothesis that phytoplankton growths rate in Armando Ribeiro reservoir, a huge eutrophic reservoir in semi-arid region of Rio Grande do Norte state, is more limited by nutrient available then zooplankton grazing pressure. Bioassay was conduced monthly from September (2008) to August (2009) manipulating two levels of nutrients (with/without addition) and two level of grazers (with/without removal). Experimental design was factorial 2X2 with four treatments (X5), (i) control with water and zooplankton from natural spot ( C ), (ii) with nutrient addition ( +NP ), (iii) with zooplankton remove ( -Z ) and (iv) with zooplankton remove and nutrient addition ( -Z+NP ). For bioassay confection transparent plastic bottles (500ml) was incubate for 4 or 5 days in two different depths, Secchi`s depth (high luminosity) and 3 times Secchi`s depth (low luminosity). Water samples were collected from each bottle in begins and after incubates period for chlorophyll a concentration analysis and zoopalnktonic organisms density. Phytoplankton growths rates were calculated. Bifactorial ANOVA was performance to test if had a significant effect (p<0,005) of nutrient addition and grazers remove as well a significant interaction between factors on phytoplankton growths rates. Effect magnitude was calculated the relative importance of each process. Results show that phytoplankton growth was in generally stimulated by nutrient addition, as while zooplankton remove rarely stimulated phytoplankton growth. Some significant interactions happening between nutrient additions and grazers remove on phytoplankton growth. In conclusion this study suggests that in studied reservoir phytoplankton growth is more controlled by ascendent factors than descendent

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing of pollution in aquatic ecosystems in the last decades has caused an expansion of eutrophication and loss of water quality for human consumption. The increase of frequency and intensity of cyanobacteria blooms have been recognized as a major problem connected to water quality and eutrophication. The knowledge of environmental factors controlling these blooms is a key step towards the management for recovering aquatic ecosystems from eutrophic conditions. Primary productivity in aquatic ecosystems is dependent on light and nutrients availability. In the present work we evaluated the relative importance of the concentration of major nutrients, such as phosphorus and nitrogen, and light for phytoplankton growth in the main water reservoir of Rio Grande do Norte State, named Engenheiro Armando Ribeiro Gonçalves (EARG), which is an eutrophic system, dominated by potentially toxic cyanobacteria populations. Limitation of phytoplankton growth was evaluated through bioassays using differential enrichment of nutrients (N and/or P) under two light conditions (low light and high light) and monthly monitoring of chlorophyll-a and nutrients (total nitrogen and phosphorus) concentrations, and water transparency (Secchi depth) at the pelagic region. Our results confirm that EARG reservoir is an eutrophic system with a low water quality. Results of bioassays on the growth of phytoplankton limitation (N or P) were conflicting with the results predicted by the TN:TP ratios, which indicates that these ratios were not a good indicator of algal growth limitation. Nitrogen was the limiting nutrient, considering both frequency and magnitude. Light and hidrology affected phytoplankton response to nutrient enrichment. The extreme eutrophic conditions of this reservoir, dominated by cyanobacteria blooms, demand urgent managing strategies in order to guarantee the multiple uses for this system, including water supply for human population. Although nitrogen is the limiting nutrient, an effective management program must focus on the reduction of both phosphorus and nitrogen input

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phytoplankton growth is dependent of several abiotic (nutrients, temperature) and biotic (predation by zooplankton) variables. In this work, a mathematical model was developed in Stella software to understand the planktonic dynamics of Extremoz Lagoon (RN) and to simulate scenarios of different environmental conditions. Data were collected monthly at two points of the lagoon. The state variables are phytoplankton and zooplankton and forcing variables are nitrogen, phosphorus and temperature. The results show that: a) the model are well coupled, especially when some constants assume different values; b) simulated nutrient concentrations reduction decreases phytoplankton biomass, but the increase of nutrients does not stimulate the growth; c) changes in the temperature does not change the phytoplankton biomass; d) changes in zooplankton biomass affect directly and reduces the phytoplankton, indicating a topdown control mechanism; e) changes in the nutrient concentration modified the biomass of zooplankton suggesting a rapid flow of energy between nutrients, phytoplankton and zooplankton and a ecosystem likely arranged in an inverted pyramid (higher concentration of zooplankton than phytoplankton)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nutrient criteria as reference concentrations and trophic state boundaries are necessary for water management worldwide because anthropogenic eutrophication is a threat to the water uses. We compiled data on total phosphorus (TP), nitrogen (TN) and chlorophyll a (Chl a) from 17 subtropical reservoirs monitored from 2005-2009 in the Sao Paulo State (Brazil) to calculate reference concentrations through the trisection method (United States Environmental Protection Agency). By dividing our dataset into thirds we presented trophic state boundaries and frequency curves for the nutrient levels in water bodies with different enrichment conditions. TP and TN baseline concentrations (0.010 mg/L and 0.350 mg/L, respectively) were bracketed by ranges for temperate reservoirs available in the literature. We propose trophic state boundaries (upper limits for the oligotrophic category: 0.010 mg TP/L, 0.460 mg TN/L and 1.7 mu g Chl a/L; for the mesotrophic: 0.030 mg TP/L, 0.820 mg TN/L and 9.0 mu g Chl a/L). Through an example with a different dataset (from the Itupararanga Reservoir, Brazil), we encouraged the use of frequency curves to compare data from individual monitoring efforts with the expected concentrations in oligotrophic, mesotrophic and eutrophic regional systems. Such analysis might help designing recovery programs to reach targeted concentrations and mitigate the undesirable eutrophication symptoms in subtropical freshwaters.