953 resultados para Physics, Nuclear|Physics, Elementary Particles and High Energy
Resumo:
Making use of a recursive approach, derivative dispersion relations are generalized for an arbitrary number of subtractions. The results for both cross even and odd amplitudes are theoretically consistent at sufficiently high energies and in the region of small momentum transfer. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Using the manifestly spacetime-supersymmetric version of open superstring field theory, we construct the free action for the first massive states of the open superstring compactified to four dimensions. This action is in N = 1 D = 4 superspace and describes a massive spin-2 multiplet coupled to two massive scalar multiplets. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We write the BRST operator of the N = 1 superstring as, Q = e-R(1/2πiφdzγ2b)eR where y and b are super-reparameterization ghosts. This provides a trivial proof that Q is nilpotent. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We show that the implementation of chiral symmetry in recent studies of the hadron spectrum in the context of the constituent quark model is inconsistent with chiral perturbation theory. In particular, we show that the leading nonanalytic (LNA) contributions to the hadron masses are incorrect in such approaches. The failure to implement the correct chiral behaviour of QCD results in incorrect systematics for the corrections to the masses. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The superstring is quantized in a manner which manifestly preserves a U(5) subgroup of the (Wick-rotated) ten-dimensional super-Poincaré invariance. This description of the superstring contains critical N = 2 worldsheet superconformal invariance and is a natural covariantization of the U(4)-invariant light-cone Green-Schwarz description. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Bose-Einstein correlations are studied in semileptonic (WW → qq̄lv) and fully hadronic (WW → qq̄qq̄) W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189 GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einstein correlations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW → qq̄lv events. The same Monte Carlo reproduces the correlations in the WW → qq̄qq̄ channel assuming independent fragmentation of the two W's. A variant of this model with Bose-Einstein correlations between decay products of different W's is disfavoured. (C) 2000 Published by Elsevier Science B.V.
Resumo:
We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.
Resumo:
We perform a numerical study of the preheating mechanism of particle production in models of quintessential inflation and compare it with the usual gravitational production mechanism. We find that even for a very small coupling between the inflaton field and a massless scalar field, g ≳ 10 -6, preheating dominates over gravitational particle production. Reheating temperatures in the range 10 4 ≲ T rh ≲ 10 15 GeV can be easily obtained. © 2003 Published by Elsevier B.V.
Resumo:
It is demonstrated that measurements of photon asymmetry in the γn → K-K+n reaction, can most likely determine the parity of the newly discovered Θ+ pentaquark. We predict that if the parity of Θ+ is positive, the photon asymmetry is significantly positive; if the parity is negative, the photon asymmetry is significantly negative. If the background contribution is large, the photon asymmetry may become very small in magnitude, thereby making it difficult to distinguish between the positive and negative parity results. However, even in this case, a combined analysis of the (K+n) invariant mass distribution and photon asymmetry should allow a determination of the parity of Θ+. © 2004 Published by Elsevier B.V.
Resumo:
We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.
Resumo:
We present a measurement of the top quark pair (tt̄) production cross section in pp̄ collisions at √s=1.96 TeV using events with two charged leptons in the final state. This analysis utilizes an integrated luminosity of 224-243 pb-1 collected with the DØ detector at the Fermilab Tevatron Collider. We observe 13 events in the e+e -, eμ and μ+μ- channels with an expected background of 3.2±0.7 events. For a top quark mass of 175 GeV, we measure a tt̄ production cross section of σtt̄=8. 6-2.7 +3.2(stat)±1.1(syst)±0.6(lumi) pb, consistent with the standard model prediction. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/. c to 1 TeV/. c. The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.), independent of the muon momentum, below 100 GeV/. c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments. © 2010.
Resumo:
We present a search for associated production of Higgs and W bosons in pp̄ collisions at a center of mass energy of s=1.96 TeV in 5.3 fb-1 of integrated luminosity recorded by the D0 experiment. Multivariate analysis techniques are applied to events containing one lepton, an imbalance in transverse energy, and one or two b-tagged jets to discriminate a potential WH signal from Standard Model backgrounds. We observe good agreement between data and expected backgrounds, and set an upper limit of 4.5 (at 95% confidence level and for mH=115 GeV) on the ratio of the WH cross section multiplied by the branching fraction of H→bb̄ to its Standard Model prediction, which is consistent with an expected limit of 4.8. © 2011 Elsevier B.V.
Resumo:
A measurement of the forward-backward asymmetry (AFB) of Drell-Yan lepton pairs in pp collisions at s=7TeV is presented. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 5fb-1. The asymmetry is measured as a function of dilepton mass and rapidity in the dielectron and dimuon channels. Combined results from the two channels are presented, and are compared with the standard model predictions. The AFB measurement in the dimuon channel and the combination of the two channels are the first such results obtained at a hadron collider. The measured asymmetries are consistent with the standard model predictions. © 2012 CERN.
Resumo:
Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e+e- or μ+μ-) and the other into jets. An example of such a resonance is the Kaluza-Klein graviton, GKK, predicted in Randall-Sundrum models. The analysis is based on a 4.9 fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. Kinematic and topological properties including decay angular distributions are used to discriminate between signal and background. No evidence for a resonance is observed, and upper limits on the production cross sections times branching fractions are set. In two models that predict Z-boson spin correlations in graviton decays, graviton masses are excluded lower than a value which varies between 610 and 945 GeV, depending on the model and the strength of the graviton couplings. © 2012 CERN.