958 resultados para Physical-ecological coupled model
Resumo:
An idealised Pangean configuration is integrated in a coupled ocean atmosphere general circulation model to investigate the form of the ocean circulation and its impacts on the large scale climate system. A vigorous, hemispherically symmetric overturning is found, driven by deep water formation at high latitudes. Whilst the peak mass transport is around 100Sv, a low vertical temperature gradient in the ocean means that the maximum heat transport is only 1.2PW. The geographical change in the coupled model is found to produce a global average warming of 2°C, despite an increase in global surface albedo. This occurs through changes in the atmospheric water vapour and cloud distributions. There is also reduction in the equator-pole temperature gradient, largely attributable to the same causes, avoiding the paradox of low meridional temperature gradients without increased polar heat transport.
Resumo:
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.
Resumo:
This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.
Resumo:
Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.
Resumo:
We compare the variability of the Atlantic meridional overturning circulation (AMOC) as simulated by the coupled climate models of the RAPID project, which cover a wide range of resolution and complexity, and observed by the RAPID/MOCHA array at about 26N. We analyse variability on a range of timescales. In models of all resolutions there is substantial variability on timescales of a few days; in most AOGCMs the amplitude of the variability is of somewhat larger magnitude than that observed by the RAPID array, while the amplitude of the simulated annual cycle is similar to observations. A dynamical decomposition shows that in the models, as in observations, the AMOC is predominantly geostrophic (driven by pressure and sea-level gradients), with both geostrophic and Ekman contributions to variability, the latter being exaggerated and the former underrepresented in models. Other ageostrophic terms, neglected in the observational estimate, are small but not negligible. In many RAPID models and in models of the Coupled Model Intercomparison Project Phase 3 (CMIP3), interannual variability of the maximum of the AMOC wherever it lies, which is a commonly used model index, is similar to interannual variability in the AMOC at 26N. Annual volume and heat transport timeseries at the same latitude are well-correlated within 15-45N, indicating the climatic importance of the AMOC. In the RAPID and CMIP3 models, we show that the AMOC is correlated over considerable distances in latitude, but not the whole extent of the north Atlantic; consequently interannual variability of the AMOC at 50N is not well-correlated with the AMOC at 26N.
Resumo:
The new HadKPP atmosphere–ocean coupled model is described and then used to determine the effects of sub-daily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intra-seasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K Profile Parameterization ocean-boundary-layer model. Four 30-member ensembles were performed that varied in oceanic vertical resolution between 1 m and 10 m and in coupling frequency between 3 h and 24 h. The 10 m, 24 h ensemble exhibited roughly 60% of the observed 30–50 day variability in sea-surface temperatures and rainfall and very weak northward propagation. Enhancing either only the vertical resolution or only the coupling frequency produced modest improvements in variability and only a standing intra-seasonal oscillation. Only the 1 m, 3 h configuration generated organized, northward-propagating convection similar to observations. Sub-daily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intra-seasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical sub-seasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intra-seasonal oscillation resembling observations.
Resumo:
A simple and coherent framework for partitioning uncertainty in multi-model climate ensembles is presented. The analysis of variance (ANOVA) is used to decompose a measure of total variation additively into scenario uncertainty, model uncertainty and internal variability. This approach requires fewer assumptions than existing methods and can be easily used to quantify uncertainty related to model-scenario interaction - the contribution to model uncertainty arising from the variation across scenarios of model deviations from the ensemble mean. Uncertainty in global mean surface air temperature is quantified as a function of lead time for a subset of the Coupled Model Intercomparison Project phase 3 ensemble and results largely agree with those published by other authors: scenario uncertainty dominates beyond 2050 and internal variability remains approximately constant over the 21st century. Both elements of model uncertainty, due to scenario-independent and scenario-dependent deviations from the ensemble mean, are found to increase with time. Estimates of model deviations that arise as by-products of the framework reveal significant differences between models that could lead to a deeper understanding of the sources of uncertainty in multi-model ensembles. For example, three models are shown diverging pattern over the 21st century, while another model exhibits an unusually large variation among its scenario-dependent deviations.
Resumo:
We compare the variability of the Atlantic meridional overturning circulation (AMOC) as simulated by the coupled climate models of the RAPID project, which cover a wide range of resolution and complexity, and observed by the RAPID/MOCHA array at about 26N. We analyse variability on a range of timescales, from five-daily to interannual. In models of all resolutions there is substantial variability on timescales of a few days; in most AOGCMs the amplitude of the variability is of somewhat larger magnitude than that observed by the RAPID array, while the time-mean is within about 10% of the observational estimate. The amplitude of the simulated annual cycle is similar to observations, but the shape of the annual cycle shows a spread among the models. A dynamical decomposition shows that in the models, as in observations, the AMOC is predominantly geostrophic (driven by pressure and sea-level gradients), with both geostrophic and Ekman contributions to variability, the latter being exaggerated and the former underrepresented in models. Other ageostrophic terms, neglected in the observational estimate, are small but not negligible. The time-mean of the western boundary current near the latitude of the RAPID/MOCHA array has a much wider model spread than the AMOC does, indicating large differences among models in the simulation of the wind-driven gyre circulation, and its variability is unrealistically small in the models. In many RAPID models and in models of the Coupled Model Intercomparison Project Phase 3 (CMIP3), interannual variability of the maximum of the AMOC wherever it lies, which is a commonly used model index, is similar to interannual variability in the AMOC at 26N. Annual volume and heat transport timeseries at the same latitude are well-correlated within 15--45N, indicating the climatic importance of the AMOC. In the RAPID and CMIP3 models, we show that the AMOC is correlated over considerable distances in latitude, but not the whole extent of the north Atlantic; consequently interannual variability of the AMOC at 50N, where it is particularly relevant to European climate, is not well-correlated with that of the AMOC at 26N, where it is monitored by the RAPID/MOCHA array.
Resumo:
There is intense scientific and public interest in the Intergovernmental Panel on Climate Change (IPCC) projections of sea level for the twenty-first century and beyond. The Fourth Assessment Report (AR4) projections, obtained by applying standard methods to the results of the World Climate Research Programme Coupled Model Experiment, includes estimates of ocean thermal expansion, the melting of glaciers and ice caps (G&ICs), increased melting of the Greenland Ice Sheet, and increased precipitation over Greenland and Antarctica, partially offsetting other contributions. The AR4 recognized the potential for a rapid dynamic ice sheet response but robust methods for quantifying it were not available. Illustrative scenarios suggested additional sea level rise on the order of 10 to 20 cm or more, giving a wide range in the global averaged projections of about 20 to 80 cm by 2100. Currently, sea level is rising at a rate near the upper end of these projections. Since publication of the AR4 in 2007, biases in historical ocean temperature observations have been identified and significantly reduced, resulting in improved estimates of ocean thermal expansion. Models that include all climate forcings are in good agreement with these improved observations and indicate the importance of stratospheric aerosol loadings from volcanic eruptions. Estimates of the volumes of G&ICs and their contributions to sea level rise have improved. Results from recent (but possibly incomplete) efforts to develop improved ice sheet models should be available for the 2013 IPCC projections. Improved understanding of sea level rise is paving the way for using observations to constrain projections. Understanding of the regional variations in sea level change as a result of changes in ocean properties, wind-stress patterns, and heat and freshwater inputs into the ocean is improving. Recently, estimates of sea level changes resulting from changes in Earth's gravitational field and the solid Earth response to changes in surface loading have been included in regional projections. While potentially valuable, semi-empirical models have important limitations, and their projections should be treated with caution
Resumo:
In this paper the authors exploit two equivalent formulations of the average rate of material entropy production in the climate system to propose an approximate splitting between contributions due to vertical and eminently horizontal processes. This approach is based only on 2D radiative fields at the surface and at the top of atmosphere. Using 2D fields at the top of atmosphere alone, lower bounds to the rate of material entropy production and to the intensity of the Lorenz energy cycle are derived. By introducing a measure of the efficiency of the planetary system with respect to horizontal thermodynamic processes, it is possible to gain insight into a previous intuition on the possibility of defining a baroclinic heat engine extracting work from the meridional heat flux. The approximate formula of the material entropy production is verified and used for studying the global thermodynamic properties of climate models (CMs) included in the Program for Climate Model Diagnosis and Intercomparison (PCMDI)/phase 3 of the Coupled Model Intercomparison Project (CMIP3) dataset in preindustrial climate conditions. It is found that about 90% of the material entropy production is due to vertical processes such as convection, whereas the large-scale meridional heat transport contributes to only about 10% of the total. This suggests that the traditional two-box models used for providing a minimal representation of entropy production in planetary systems are not appropriate, whereas a basic—but conceptually correct—description can be framed in terms of a four-box model. The total material entropy production is typically 55 mW m−2 K−1, with discrepancies on the order of 5%, and CMs’ baroclinic efficiencies are clustered around 0.055. The lower bounds on the intensity of the Lorenz energy cycle featured by CMs are found to be around 1.0–1.5 W m−2, which implies that the derived inequality is rather stringent. When looking at the variability and covariability of the considered thermodynamic quantities, the agreement among CMs is worse, suggesting that the description of feedbacks is more uncertain. The contributions to material entropy production from vertical and horizontal processes are positively correlated, so that no compensation mechanism seems in place. Quite consistently among CMs, the variability of the efficiency of the system is a better proxy for variability of the entropy production due to horizontal processes than that of the large-scale heat flux. The possibility of providing constraints on the 3D dynamics of the fluid envelope based only on 2D observations of radiative fluxes seems promising for the observational study of planets and for testing numerical models.
Assessing and understanding the impact of stratospheric dynamics and variability on the earth system
Resumo:
Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and Their Role in Climate (SPARC) DynVar activity to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multi-model datasets. First, roughly 10 models with a well resolved stratosphere are participating in the Coupled Model Intercomparison Project 5 (CMIP5), providing the first multi-model ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Historical Forecasting Project (SHFP) of WCRP's Climate Variability and predictability (CLIVAR) program is forming a multi-model set of seasonal hindcasts with stratosphere resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and SHFP model-data sets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections. Capsule New modeling efforts will provide unprecedented opportunities to harness our knowledge of the stratosphere to improve weather and climate prediction.
Resumo:
Current state-of-the-art climate models fail to capture accurately the path of the Gulf Stream and North Atlantic Current. This leads to a warm bias near the North American coast, where the modelled Gulf Stream separates from the coast further north, and a cold anomaly to the east of the Grand Banks of Newfoundland, where the North Atlantic Current remains too zonal in this region. Using an atmosphere-only model forced with the sea surface temperature (SST) biases in the North Atlantic, we consider the impact they have on the mean state and the variability in the North Atlantic European region in winter. Our results show that the SST errors produce a mean sea-level pressure response that is similar in magnitude and pattern to the atmospheric circulation errors in the coupled climate model. The work also suggests that errors in the coupled model storm tracks and North Atlantic Oscillation, compared to reanalysis data, can also be explained partly by these SST errors. Our results suggest that both the error in the Gulf Stream separation location and the path of the North Atlantic Current around the Grand Banks play important roles in affecting the atmospheric circulation. Reducing these coupled model errors could improve significantly the representation of the large-scale atmospheric circulation of the North Atlantic and European region.
Resumo:
Under increasing greenhouse gas concentrations, ocean heat uptake moderates the rate of climate change, and thermal expansion makes a substantial contribution to sea level rise. In this paper we quantify the differences in projections among atmosphere-ocean general circulation models of the Coupled Model Intercomparison Project in terms of transient climate response, ocean heat uptake efficiency and expansion efficiency of heat. The CMIP3 and CMIP5 ensembles have statistically indistinguishable distributions in these parameters. The ocean heat uptake efficiency varies by a factor of two across the models, explaining about 50% of the spread in ocean heat uptake in CMIP5 models with CO2 increasing at 1%/year. It correlates with the ocean global-mean vertical profiles both of temperature and of temperature change, and comparison with observations suggests the models may overestimate ocean heat uptake and underestimate surface warming, because their stratification is too weak. The models agree on the location of maxima of shallow ocean heat uptake (above 700 m) in the Southern Ocean and the North Atlantic, and on deep ocean heat uptake (below 2000 m) in areas of the Southern Ocean, in some places amounting to 40% of the top-to-bottom integral in the CMIP3 SRES A1B scenario. The Southern Ocean dominates global ocean heat uptake; consequently the eddy-induced thickness diffusivity parameter, which is particularly influential in the Southern Ocean, correlates with the ocean heat uptake efficiency. The thermal expansion produced by ocean heat uptake is 0.12 m YJ−1, with an uncertainty of about 10% (1 YJ = 1024 J).
Resumo:
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.
Resumo:
Climate modeling is a complex process, requiring accurate and complete metadata in order to identify, assess and use climate data stored in digital repositories. The preservation of such data is increasingly important given the development of ever-increasingly complex models to predict the effects of global climate change. The EU METAFOR project has developed a Common Information Model (CIM) to describe climate data and the models and modelling environments that produce this data. There is a wide degree of variability between different climate models and modelling groups. To accommodate this, the CIM has been designed to be highly generic and flexible, with extensibility built in. METAFOR describes the climate modelling process simply as "an activity undertaken using software on computers to produce data." This process has been described as separate UML packages (and, ultimately, XML schemas). This fairly generic structure canbe paired with more specific "controlled vocabularies" in order to restrict the range of valid CIM instances. The CIM will aid digital preservation of climate models as it will provide an accepted standard structure for the model metadata. Tools to write and manage CIM instances, and to allow convenient and powerful searches of CIM databases,. Are also under development. Community buy-in of the CIM has been achieved through a continual process of consultation with the climate modelling community, and through the METAFOR team’s development of a questionnaire that will be used to collect the metadata for the Intergovernmental Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs.