934 resultados para Physical mechanisms


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution and mobilization of fluid in a porous medium depend on the capillary, gravity, and viscous forces. In oil field, the processes of enhanced oil recovery involve change and importance of these forces to increase the oil recovery factor. In the case of gas assisted gravity drainage (GAGD) process is important to understand the physical mechanisms to mobilize oil through the interaction of these forces. For this reason, several authors have developed physical models in laboratory and core floods of GAGD to study the performance of these forces through dimensionless groups. These models showed conclusive results. However, numerical simulation models have not been used for this type of study. Therefore, the objective of this work is to study the performance of capillary, viscous and gravity forces on GAGD process and its influence on the oil recovery factor through a 2D numerical simulation model. To analyze the interplay of these forces, dimensionless groups reported in the literature have been used such as Capillary Number (Nc), Bond number (Nb) and Gravity Number (Ng). This was done to determine the effectiveness of each force related to the other one. A comparison of the results obtained from the numerical simulation was also carried out with the results reported in the literature. The results showed that before breakthrough time, the lower is the injection flow rate, oil recovery is increased by capillary force, and after breakthrough time, the higher is the injection flow rate, oil recovery is increased by gravity force. A good relationship was found between the results obtained in this research with those published in the literature. The simulation results indicated that before the gas breakthrough, higher oil recoveries were obtained at lower Nc and Nb and, after the gas breakthrough, higher oil recoveries were obtained at lower Ng. The numerical models are consistent with the reported results in the literature

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery of giant stars in the spectral regions G and K, showing moderate to rapid rotation and single behavior, namely with constant radial velocity, represents one important topic of study in Stellar Astrophysics. Indeed, such anomalous rotation clearly violates the theoretical predictions on the evolution of stellar rotation, since in evolved evolutionary stages is expected that the single stars essentially have low rotation due to the evolutionary expansion. This property is well-established from the observational point of view, with different studies showing that for single giant stars of spectral types G and K values of the rotation are typically smaller than 5kms−1 . This Thesis seeks an effective contribution to solving the paradigm described above, aiming to search for single stars of spectral types G and K with anomalous rotation, tipically rotation of moderate to rapid, in other luminosity classes. In this context, we analyzed a large stellar sample consisting of 2010 apparently single stars of luminosity classes IV, III, II and Ib with spectral types G and K, with rotational velocity v sin i and radial velocity measurements obtained from observations made by CORAVEL spectrometers. As a first result of impact we discovered the presence of anomalous rotators also among subgiants, bright giants and supergiants stars, namelly stars of luminosity classes IV, II and Ib, in contrast to previous studies, that reported anomalous rotators only in the luminosity class III classic giants. Such a finding of great significance because it allows us to analyze the presence of anomalous rotation at different intervals of mass, since the luminosity classes considered here cover a mass range between 0.80 and 20MJ, approximately. In the present survey we discovered 1 subgiant, 9 giants, 2 bright giants and 5 Ib supergiants, in spectral regions G and K, with values of v sin i ≥ 10kms−1 and single behavior. This amount of 17 stars corresponds to a frequency of 0.8% of G and K single evolved stars with anomalous rotation in the mentioned classes of luminosities, listed at the Bright Star Catalog, which is complete to visual magnitude 6.3. Given these new findings, based on a stellar sample complete in visual magnitude, as that of the Bright Star Catalog, we conducted a comparative statistical analysis using the Kolmogorov- Smirnov test, from where we conclude that the distributions of rotational velocity, v sin i, for single evolved stars with anomalous rotation in luminosity classes III and II, are similar to the distributions of v sin i for spectroscopic binary systems with evolved components with the same spectral type and luminosity class. This vii result indicates that the process of coalescence between stars of a binary system might be a possible mechanism to explain the observed abnormal rotation in the referred abnormal rotators, at least among the giants and bright giants, where the rotation in excess would be associated with the transfer of angular momentum for the star resulting from the merger. Another important result of this Thesis concerns the behavior of the infrared emission in most of the stars with anomalous rotation here studied, where 14 stars of the sample tend to have an excess in IR compared with single stars with low rotation, within of their luminosity class. This property represents an additional link in the search for the physical mechanisms responsible for the abnormal observed rotation, since recent theoretical studies show that the accretion of objects of sub-stellar mass, such as brown dwarfs and giant planets, by the hosting star, can significantly raise its rotation, producing also a circumstellar dust disk. This last result seems to point in that direction, since it is not expected that dust disks occurring during the stage of star formation can survive until the stages of subgiants, giants and supergiants Ib. In summary, in this Thesis, besides the discovery of single G and K evolved stars of luminosity classes IV, II and Ib with anomalously high rotation compared to what is predicted by stellar evolution theory, we also present the frequency of these abnormal rotators in a stellar sample complete to visual magnitude 6.3. We also present solid evidence that coalescence processes in stellar binary systems and processes of accretion of brown dwarfs star or giant planets, by the hosting stars, can act as mechanisms responsible for the puzzling phenomenon of anomalous rotation in single evolved stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigates the emerging InAlN high electron mobility transistor (HEMT) technology with respect to its application in the space industry. The manufacturing processes and device performance of InAlN HEMTs were compared to AlGaN HEMTs, also produced as part of this work. RF gain up to 4 GHz was demonstrated in both InAlN and AlGaN HEMTs with gate lengths of 1 μm, with InAlN HEMTs generally showing higher channel currents (~150 c.f. 60 mA/mm) but also degraded leakage properties (~ 1 x 10-4 c.f. < 1 x 10-8 A/mm) with respect to AlGaN. An analysis of device reliability was undertaken using thermal stability, radiation hardness and off-state breakdown measurements. Both InAlN and AlGaN HEMTs showed excellent stability under space-like conditions, with electrical operation maintained after exposure to 9.2 Mrad of gamma radiation at a dose rate of 6.6 krad/hour over two months and after storage at 250°C for four weeks. Furthermore a link was established between the optimisation of device performance (RF gain, power handling capabilities and leakage properties) and reliability (radiation hardness, thermal stability and breakdown properties), particularly with respect to surface passivation. Following analysis of performance and reliability data, the InAlN HEMT device fabrication process was optimised by adjusting the metal Ohmic contact formation process (specifically metal stack thicknesses and anneal conditions) and surface passivation techniques (plasma power during dielectric layer deposition), based on an existing AlGaN HEMT process. This resulted in both a reduction of the contact resistivity to around 1 x 10-4 Ω.cm2 and the suppression of degrading trap-related effects, bringing the measured gate-lag close to zero. These discoveries fostered a greater understanding of the physical mechanisms involved in device operation and manufacture, which is elaborated upon in the final chapter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Russell Cycle is one of the classical examples of climate influence on biological oceanography, represented as shifts in the marine plankton over several decades with warm and cool conditions. While the time-series data associated with the phenomenon indicate cyclical patterns, the question remains whether or not the Russell Cycle should be considered a “true cycle”. Zooplankton time-series data from 1924 to 2011 from the western English Channel were analysed with principal component (PC), correlation and spectral analyses to determine the dominant trends, and cyclic frequencies of the Russell Cycle indicators in relation to long-term hydroclimatic indices. PC1 accounted for 37.4% of the variability in the zooplankton data with the main contributions from non-clupeid fish larvae, southwestern zooplankton, and overall zooplankton biovolume. For PC2 (14.6% of data variance), the dominant groups were northern fish larvae, non-sardine eggs, and southern fish larvae. Sardine eggs were the major contributors to PC3 (representing 12.1% of data variance). No significant correlations were observed between the above three components and climate indices: Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and local seawater temperature. Significant 44- and 29-year frequencies were observed for PC3, but the physical mechanisms driving the cycles are unclear. Harmonic analysis did not reveal any significant frequencies in the physical variables or in PCs 1 and 2. To a large extent, this is due to the dominant cycles in all datasets generally being long term (>50 years or so) and not readily resolved in the examined time frame of 88 years, hence restricting the ability to draw firm conclusions on the multidecadal relationship between zooplankton community dynamics in the western English Channel and environmental indices. Thus, the zooplankton time-series often associated and represented as the Russell Cycle cannot be concluded as being truly cyclical.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Russell Cycle is one of the classical examples of climate influence on biological oceanography, represented as shifts in the marine plankton over several decades with warm and cool conditions. While the time-series data associated with the phenomenon indicate cyclical patterns, the question remains whether or not the Russell Cycle should be considered a “true cycle”. Zooplankton time-series data from 1924 to 2011 from the western English Channel were analysed with principal component (PC), correlation and spectral analyses to determine the dominant trends, and cyclic frequencies of the Russell Cycle indicators in relation to long-term hydroclimatic indices. PC1 accounted for 37.4% of the variability in the zooplankton data with the main contributions from non-clupeid fish larvae, southwestern zooplankton, and overall zooplankton biovolume. For PC2 (14.6% of data variance), the dominant groups were northern fish larvae, non-sardine eggs, and southern fish larvae. Sardine eggs were the major contributors to PC3 (representing 12.1% of data variance). No significant correlations were observed between the above three components and climate indices: Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and local seawater temperature. Significant 44- and 29-year frequencies were observed for PC3, but the physical mechanisms driving the cycles are unclear. Harmonic analysis did not reveal any significant frequencies in the physical variables or in PCs 1 and 2. To a large extent, this is due to the dominant cycles in all datasets generally being long term (>50 years or so) and not readily resolved in the examined time frame of 88 years, hence restricting the ability to draw firm conclusions on the multidecadal relationship between zooplankton community dynamics in the western English Channel and environmental indices. Thus, the zooplankton time-series often associated and represented as the Russell Cycle cannot be concluded as being truly cyclical.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems. 

Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars. 

Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. 

Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1

Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study the relationship between heterogeneous nucleate boiling surfaces and deposition of suspended metallic colloidal particles, popularly known as crud or corrosion products in process industries, on those heterogeneous sites is investigated. Various researchers have reported that hematite is a major constituent of crud which makes it the primary material of interest; however the models developed in this work are irrespective of material choice. Qualitative hypotheses on the deposition process under boiling as proposed by previous researchers have been tested, which fail to provide explanations for several physical mechanisms observed and analyzed. In this study a quantitative model of deposition rate has been developed on the basis of bubble dynamics and colloid-surface interaction potential. Boiling from a heating surface aids in aggregation of the metallic particulates viz. nano-particles, crud particulate, etc. suspended in a liquid, which helps in transporting them to heating surfaces. Consequently, clusters of particles deposit onto the heating surfaces due to various interactive forces, resulting in formation of porous or impervious layers. The deposit layer grows or recedes depending upon variations in interparticle and surface forces, fluid shear, fluid chemistry, etc. This deposit layer in turn affects the rate of bubble generation, formation of porous chimneys, critical heat flux (CHF) of surfaces, activation and deactivation of nucleation sites on the heating surfaces. Several problems are posed due to the effect of boiling on colloidal deposition, which range from research initiatives involving nano-fluids as a heat transfer medium to industrial applications such as light water nuclear reactors. In this study, it is attempted to integrate colloid and surface science with vapor bubble dynamics, boiling heat transfer and evaporation rate. Pool boiling experiments with dilute metallic colloids have been conducted to investigate several parameters impacting the system. The experimental data available in the literature is obtained by flow experiments, which do not help in correlating boiling mechanism with the deposition amount or structure. With the help of experimental evidences and analysis, previously proposed hypothesis for particle transport to the contact line due to hydrophobicity has been challenged. The experimental observations suggest that deposition occurs around the bubble surface contact line and extends underneath area of the bubble microlayer as well. During the evaporation the concentration gradient of a non-volatile species is created, which induces osmotic pressure. The osmotic pressure developed inside the microlayer draws more particles inside the microlayer region or towards contact line. The colloidal escape time is slower than the evaporation time, which leads to the aggregation of particles in the evaporating micro-layer. These aggregated particles deposit onto or are removed from the heating surface, depending upon their total interaction potential. Interaction potential has been computed with the help of surface charge and van der Waals potential for the materials in aqueous solutions. Based upon the interaction-force boundary layer thickness, which is governed by debye radius (or ionic concentration and pH), a simplified quantitative model for the attachment kinetics is proposed. This attachment kinetics model gives reasonable results in predicting attachment rate against data reported by previous researchers. The attachment kinetics study has been done for different pH levels and particle sizes for hematite particles. Quantification of colloidal transport under boiling scenarios is done with the help of overall average evaporation rates because generally waiting times for bubbles at the same position is much larger than growth times. In other words, from a larger measurable scale perspective, frequency of bubbles dictates the rate of collection of particles rather than evaporation rate during micro-layer evaporation of one bubble. The combination of attachment kinetics and colloidal transport kinetics has been used to make a consolidated model for prediction of the amount of deposition and is validated with the help of high fidelity experimental data. In an attempt to understand and explain boiling characteristics, high speed visualization of bubble dynamics from a single artificial large cavity and multiple naturally occurring cavities is conducted. A bubble growth and departure dynamics model is developed for artificial active sites and is validated with the experimental data. The variation of bubble departure diameter with wall temperature is analyzed with experimental results and shows coherence with earlier studies. However, deposit traces after boiling experiments show that bubble contact diameter is essential to predict bubble departure dynamics, which has been ignored previously by various researchers. The relationship between porosity of colloid deposits and bubbles under the influence of Jakob number, sub-cooling and particle size has been developed. This also can be further utilized in variational wettability of the surface. Designing porous surfaces can having vast range of applications varying from high wettability, such as high critical heat flux boilers, to low wettability, such as efficient condensers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Until the early 90s, the simulation of fluid flow in oil reservoir basically used the numerical technique of finite differences. Since then, there was a big development in simulation technology based on streamlines, so that nowadays it is being used in several cases and it can represent the physical mechanisms that influence the fluid flow, such as compressibility, capillarity and gravitational segregation. Streamline-based flow simulation is a tool that can help enough in waterflood project management, because it provides important information not available through traditional simulation of finite differences and shows, in a direct way, the influence between injector well and producer well. This work presents the application of a methodology published in literature for optimizing water injection projects in modeling of a Brazilian Potiguar Basin reservoir that has a large number of wells. This methodology considers changes of injection well rates over time, based on information available through streamline simulation. This methodology reduces injection rates in wells of lower efficiency and increases injection rates in more efficient wells. In the proposed model, the methodology was effective. The optimized alternatives presented higher oil recovery associated with a lower water injection volume. This shows better efficiency and, consequently, reduction in costs. Considering the wide use of the water injection in oil fields, the positive outcome of the modeling is important, because it shows a case study of increasing of oil recovery achieved simply through better distribution of water injection rates

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.