1000 resultados para Physical defenses
Resumo:
Study design: Single-blind randomized, controlled clinical study. Objectives: To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Setting: Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Methods: Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. Results: There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Conclusion: Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries. Spinal Cord (2011) 49, 1001-1007; doi:10.1038/sc.2011.37; published online 3 May 2011
Resumo:
Objective: To document the relationship between physical activity, absenteeism, presenteeism, health care utilization, and morbidity among Brazilian automotive workers. Methods: Eligible employees (N = 620) completed a questionnaire. Univariate correlations, multivariate logistic regression, and Pearson`s product-moment correlation coefficient were used. Results: Work absenteeism was associated with physical activity at work (OPA) (odds ratio, [OR] = 1.63, 95% confidence interval [CI] = 1.31 to 2.02) and leisure physical activity time excluding sport (OR = 0.73, 95% CI = 0.58 to 1.00). Health care utilization was associated with OPA (OR = 1.25, 95% CI = 0.99 to 1.58) and leisure physical activity time excluding sport (OR = 0.76, 95% CI = 0.57 to 1.02). Presenteeism showed an indirect relationship with OPA (r = 0.099, P = 0.014). Referred morbidity was associated with OPA (OR = 1.3, 95% CI = 1.06 to 1.61) and sports during leisure time (OR = 0.67, 95% CI = 0.54 to 0.82). Conclusions: Physical activity components seem to have differential relationships to the studied outcomes. Associations measured indicate negative impacts of OPA on absenteeism, health care utilization, and morbidity, although overall physical activity did not show these relationships.
Resumo:
In this study, we analyzed the effect of aerobic exercise training (AET) and of a single bout of exercise on plasma oxidative stress and on antioxidant defenses in type 2 diabetes mellitus (DM) and in healthy control subjects (C). DM and C did not differ regarding triglycerides, high-density lipoprotein cholesterol (HDL-c), insulin, and HOMA index at baseline and after AET. To measure the lag time for low-density lipoprotein (LDL) oxidation (LAG) and the maximal rate of conjugated diene formation (MCD), participants` plasma HDL(2) and HDL(3) were incubated with LDL from pooled healthy donors` plasma. In the presence of HDL(3), both LAG and MCD were similar in C and DM, but only in DM did AET improve LAG and reduce MCD. In the presence of HDL(2), the lower baseline LAG in DM equaled C after AET. MCD was unchanged in DM after AET, but was lower than C only after AET. Furthermore, after AET plasma thiobarbituric acid-reactive substances were reduced only in DM subjects. Despite not modifying the total plasma antioxidant status and serum paraoxonase-1 activity in both groups, AET lowered the plasma lipid peroxides, corrected the HDL(2), and improved the HDL(3) antioxidant efficiency in DM independent of the changes in blood glucose, insulin, and plasma HDL concentration and composition.
Resumo:
Objective: The purpose of this study was to evaluate the isolated and associated effects of estrogen therapy (estradiol valerate 1 mg/d orally) and physical exercise (moderate aerobic exercise, 3 h/wk) on health-related quality of life (HRQOL) and menopausal symptoms among women who had undergone hysterectomy. Design: A 6-month, randomized, double-blind, placebo-controlled clinical trial with 44 postmenopausal women who had undergone hysterectomy. The interventions were physical exercise and hormone therapy (n = 9), being sedentary and hormone therapy (n = 14), physical exercise and placebo (n = 11), and being sedentary and placebo (n = 10). HRQOL was assessed by a Brazilian standard version of the Medical Outcome Study Short-Forrn Health Survey and symptoms by Kupperman Index at baseline and after 6 months. Results: There was a decrease in symptoms in all groups, but only groups who performed physical exercise showed an increase in quality of life. Analysis of variance showed that changes in physical functioning (P = 0.001) and bodily pain (P = 0.012) scores over the 6-month period differed significantly between women who exercised and women who were sedentary, regardless of hormone therapy. Hormone therapy had no effect, and there was also no significant association between physical exercise and hormone therapy in HRQOL. Conclusions: Physical exercises can reduce menopausal symptoms and enhance HRQOL, independent of whether hormone therapy is taken.
Resumo:
Recent studies have investigated whether low level laser therapy (LLLT) can optimize human muscle performance in physical exercise. This study tested the effect of LLLT on muscle performance in physical strength training in humans compared with strength training only. The study involved 36 men (20.8 +/- 2.2 years old), clinically healthy, with a beginner and/or moderate physical activity training pattern. The subjects were randomly distributed into three groups: TLG (training with LLLT), TG (training only) and CG (control). The training for TG and TLG subjects involved the leg-press exercise with a load equal to 80% of one repetition maximum (1RM) in the leg-press test over 12 consecutive weeks. The LLLT was applied to the quadriceps muscle of both lower limbs of the TLG subjects immediately after the end of each training session. Using an infrared laser device (808 nm) with six diodes of 60 mW each a total energy of 50.4 J of LLLT was administered over 140 s. Muscle strength was assessed using the 1RM leg-press test and the isokinetic dynamometer test. The muscle volume of the thigh of the dominant limb was assessed by thigh perimetry. The TLG subjects showed an increase of 55% in the 1RM leg-press test, which was significantly higher than the increases in the TG subjects (26%, P = 0.033) and in the CG subjects (0.27%, P < 0.001). The TLG was the only group to show an increase in muscle performance in the isokinetic dynamometry test compared with baseline. The increases in thigh perimeter in the TLG subjects and TG subjects were not significantly different (4.52% and 2.75%, respectively; P = 0.775). Strength training associated with LLLT can increase muscle performance compared with strength training only.
Resumo:
BACKGROUND: Previous studies have shown positive effects from noninvasive ventilation (NIV) or supplemental oxygen on exercise capacity in patients with COPD. However, the best adjunct for promoting physiologic adaptations to physical training in patients with severe COPD remains to be investigated. METHODS: Twenty-eight patients (mean +/- SD age 68 +/- 7 y) with stable COPD (FEV(1) 34 +/- 9% of predicted) undergoing an exercise training program were randomized to either NIV (n = 14) or supplemental oxygen (n = 14) during group training to maintain peripheral oxygen saturation (S(pO2)) >= 90%. Physical training consisted of treadmill walking (at 70% of maximal speed) 3 times a week, for 6 weeks. Patients were assessed at baseline and after 6 weeks. Assessments included physiological adaptations during incremental exercise testing (ratio of lactate concentration to walk speed, oxygen uptake [(V) over dot(O2)], and dyspnea), exercise tolerance during 6-min walk test, leg fatigue, maximum inspiratory pressure, and health-related quality of life. RESULTS: Two patients in each group dropped out due to COPD exacerbations and lack of exercise program adherence, and 24 completed the training program. Both groups improved 6-min walk distance, symptoms, and health-related quality of life. However, there were significant differences between the NIV and supplemental-oxygen groups in lactate/speed ratio (33% vs -4%), maximum inspiratory pressure (80% vs 23%), 6-min walk distance (122 m vs 47 m), and leg fatigue (25% vs 11%). In addition, changes in S(pO2)/speed, (V) over dot(O2), and dyspnea were greater with NIV than with supplemental-oxygen. CONCLUSIONS: NIV alone is better than supplemental oxygen alone in promoting beneficial physiologic adaptations to physical exercise in patients with severe COPD.