839 resultados para Photocatalytic treatments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic activity of commercial titanium dioxide under UV and visible radiation was improved by composites of tungsten trioxide (WO3) with TiO2. WO3 was prepared by solution combustion synthesis and the mixed oxides/composites of WO3-TiO2 were prepared in different weight ratios (0, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1) by physical mixing. These catalysts were characterized by XRD, DRS, BET, SEM, TEM, pH drift method, TGA and photoluminescence. The photocatalytic activity varies with the WO3 loading in the composites. The optimum loading of WO3 in the composites was found to be 15 wt% for both UV and visible radiation. This loading showed faster dye degradation rate than commercial TiO2 (TiO2-C) and WO3 (WO3-C). The effect of initial concentrations of methylene blue (MB) and orange G (OG) and the effect of the functional group on dye degradation was studied with both anionic and cationic dyes with 15 wt% WO3-TiO2. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine powders of beta-Ga2O3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase beta-Ga2O3 nanostructures were obtained by thermal treatment at 900 degrees C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor-acceptor gallium-oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-dispersible, photocatalytic Fe3O4@TiO2 core shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magnetic separation from the dispersion once photocatalytic degradation is complete. An attractive feature of these ``capture and destroy'' nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faceted ZnO nanorods with different aspect ratios were synthesized by a solvothermal method by tuning the reaction time. Increased reaction leads to the formation of high aspect ratio ZnO nanorods largely bound by the prism planes. The high aspect ratio rods showed significantly higher visible light photocatalytic activity when compared to the lower aspect ratio structures. It is proposed that the higher activity is due to better charge separation in the elongated 1D structure. In addition, the fraction of unsaturated Zn2+ sites is higher on the {10 (1) over bar0} facets, leading to better adsorption of oxygen-containing species. These species enhance the production of reactive radicals that are responsible for photodegradation. The photocurrent for these ZnO nanostructures under solar light was measured and a direct correlation between photocurrent and aspect ratio was observed. Since the underlying mechanisms for photodegradation and photocurrent generation are directly related to the efficiency of electron-hole creation and separation, this observation corroborates that the charge separation processes are indeed enhanced in the high aspect ratio structures. The efficiency of photoconduction (electron-hole pair separation) could be further improved by attaching Au nanoparticles on ZnO, which can act as a sink for the electrons. This heterostructure exhibits a high chemisorption of oxygen, which facilitates the production of highly reactive radicals contributing to the high photoreactivity. The suggested mechanisms are applicable to other n-type semiconductor nanostructures with important implications for applications relating to energy and the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous fungus-like ZnO nanostructures have been synthesized by simple thermal annealing of the hydrothermally synthesized sheet-like ZnS(en)(0.5) complex precursor in air at 600 degrees C. Structural and morphological changes occurring during ZnS(en)(0.5) -> ZnS -> ZnO transformations have been observed closely by annealing the as-synthesized precursor at 100-600 degrees C. Wurtzite ZnS nanosheets and ZnS-ZnO composites are obtained at temperatures of 400 degrees C and 500 degrees C, respectively. Thermal decomposition and oxidation of the ZnS(en) 0.5 nanosheets have been confirmed by differential scanning calorimetry and thermo-gravimetric analysis. The visible light driven photocatalytic degradation of methylene blue dye has been demonstrated in the synthesized samples. ZnS-ZnO composite shows the highest dye degradation efficiency of 74% due to the formation of surface complex as well as higher visible light absorption as a result of band-gap narrowing effect. The porous ZnO nanostructures show efficient visible photoluminescence (PL) emission with a colour coordinate of (0.29, 0.35), which is close to that of white light (0.33, 0.33). The efficient visible PL emission as well as visible light driven photocatalytic activity of the materials synthesized in the present work might be very attractive for their applications in future optoelectronic devices, including in white light emitting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rutile phase TiO2 nanoparticles have been successfully prepared at 120 degrees C for one day via the ionothermal method using imidazolium based functionalized ionic liquid. The obtained products have been characterized by various techniques. XRD pattern shows rutile phase with crystallite size similar to 15 nm. FTIR shows a band at similar to 410 cm(-1) assigned to Ti-O-Ti stretching vibrations and few other bands due to the presence of ionic liquid. UV-vis studies show maximum absorbance at similar to 215 nm due to the imidazolium moiety and a band at 316 nm due to TiO2 nanoparticles. TEM images show that the size of particle is similar to 30 nm. TG-DTA shows weight loss corresponding to the formation of stable TiO2 nanoparticles. The rutile TiO2 nanoparticle is a promising material for hydrogen generation through photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi2Zr2O7 was synthesized via a facile solution combustion method. Two different fuels, urea and tartaric acid were used in the synthesis, which resulted in Bi2Zr2O7 crystals with different band gaps and surface areas. The structure has been determined by Rietveld refinement followed by the difference Fourier technique. The compound crystallizes in the space group Fm (3) over barm. The photocatalytic degradation of two dyes was carried out under solar radiation. Bi2Zr2O7 prepared using urea as the fuel exhibits a higher photocatalytic activity than the compound prepared using tartaric acid and comparable activity to that of commercial Evonik P-25 TiO2. It is suggested that this is due to the oxygen vacancies occurring in the two cases, the urea based compound has an occupancy of 0.216, whereas the tartaric acid based synthesis shows disorder in the oxygen position amounting to a small number of oxygen vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We highlight the need for a comprehensive, multi-disciplinary approach for the development of cost-effective water remediation methods. Combining ``chimie douce'' and green chemical principles seems essential for making these technologies economically viable and socially relevant (especially in the developing world). A comprehensive approach to water remediation will take into account issues such as nanotoxicity, chemical yield, cost, and ease of deployment in reactors. By considering technological challenges that lie ahead, we will attempt to identify directions that are likely to make photocatalytic water remediation a more global technology than it currently is. (C) 2013 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic disassembly of tertiary amine-based poly(propyl ether imine) dendrimers, in the presence of either 9,10-anthraquinone or riboflavin tetraacetate and O-2(g), leads to di- and tripropanolamine monomers. An application is shown by solubilisation of a water-insoluble dye, Sudan I, in aq. dendrimer solution ('catch'), followed by its `release' upon disassembly of the dendrimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) and silver doped zinc oxide (ZnO:Ag) nanoparticles were prepared using nitrates of zinc and silver as oxidizers and ethylene diaminetetraacetic acid (EDTA) as a fuel via low-temperature combustion synthesis (LCS) at 500 degrees C. X-ray diffraction (XRD) pattern indicates the presence of silver in the hexagonal wurtzite structure of ZnO. Fourier transform infrared (FTIR) spectrum indicates the presence of Ag-Zn-O stretching vibration at 510 cm(-1). Transmission electron microscopy (TEM) images shows that the average particle size of ZnO and ZnO:Ag nanoparticles were found to be 58 nm and 52 nm, respectively. X-ray photoelectron spectroscopy (XPS) data clearly indicates the presence of Ag in ZnO crystal lattice. The above characterization techniques indicate that the incorporation of silver affects the structural and optical properties of ZnO nanoparticles. ZnO:Ag nanoparticles exhibited 3% higher photocatalytic efficiency than pure ZnO nanoparticles. ZnO:Ag nanoparticles show better photocatalytic activity for the degradation of trypan blue (TrB) compared to undoped ZnO nanoparticles. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion of oxidizer zinc nitrate and fuel oxalic acid results in quasi-fibrous zinc oxide. The processing parameters including oxidizer to fuel ratio, time and temperature were optimized for the resultant crystal structure and morphology. Pure hexagonal phase formation does not depend on the fuel ratio, but a stoichiometric ratio of oxidizer to fuel at 450 degrees C and 30 min results in highly crystalline ZnO with 3 mu m length and 0.5 mu m width. This quasi-fiber originates from partial fusion of near spherical, similar to 60 nm particles during the rapid rate of reaction in the combustion process. Transmission electron microscopic analysis confirms the anisotropic primary particle orientation and pore distribution within the developed quasi-fibrous particles. The degradation of methyl orange was assessed by degrading the dye in the presence of the synthesized ZnO (2.95 eV) under both UV and visible light. Quasi-fibrous zinc oxide exhibits effective photocatalytic efficiency under visible light irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doubly (Sn + F) doped zinc oxide (ZnO:Sn:F) thin films were deposited onto glass substrates using a simplified spray pyrolysis technique. The deposited films were annealed at 400 degrees C under two different ambiences (air and vacuum) for 2 h. The photocatalytic activity of these films was assessed through photocatalytic decolorization kinetics of Methylene Blue (MB) dye and the decolorization efficiency of the annealed films was compared with that of their as-deposited counterpart. The photocatalytic studies reveal that the ZnO:Sn:F films annealed under vacuum environment exhibits better photocatalytic efficiency when compared with both air annealed and as-deposited films. The SEM and TEM images depict that the surface of each of the films has an overlayer comprising of nanobars formed on a bottom layer, having spherical grains. The studies show that the diameter of the nanobars plays crucial role in enhancing the photocatalytic activity of the ZnO:Sn:F films. The structural, optical and electrical studies substantiate the discussions on the photocatalytic ability of the deposited films. (C) 2014 Elsevier B.V. All rights reserved.