875 resultados para Photocatalysis, Titanium dioxide, Nanofiber, Matrix effect, Municipal effluent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the efficiency of photoelectrocatalysis based on Ti/TiO2 nanotubes in the degradation of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 and to remove their toxic properties, as an alternative method for the treatment of effluents and water. For this purpose, the discoloration rate, total organic carbon (TOC) removal, and genotoxic, cytotoxic and mutagenic responses were determined, using the comet, micronucleus and cytotoxicity assays in HepG2 cells and the Salmonella mutagenicity assay. In a previous study it was found that the surfactant Emulsogen could contribute to the low mineralization of the dyes (60% after 4h of treatment), which, in turn, seems to account for the mutagenicity of the products generated. Thus this surfactant was not added to the chloride medium in order to avoid this interference. The photoelectrocatalytic method presented rapid discoloration and the TOC reduction was ≥87% after 240min of treatment, showing that photoelectrocatalysis is able to mineralize the dyes tested. The method was also efficient in removing the mutagenic activity and cytotoxic effects of these three dyes. Thus it was concluded that photoelectrocatalysis was a promising method for the treatment of aqueous samples. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a solvothermal method for this research we synthesized nanocrystalline titanium dioxide (nc-TiO2) anatase particles with a mean diameter of 5.4 nm and evaluated their potential antifungal effect against planktonic cells of Candida albicans without UV radiation. To complement experimental data, we analyzed structural and electronic properties of both the bulk and the (1 0 1) surface of anatase by first-principles calculations. Based on experimental and theoretical results, a reactive O2H- and OH- species formation mechanism was proposed to explain the key factor which facilitates the antifungal activity. © 2013 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mo-doped TiO2 powders were prepared using a dry mixture of TiO2 and MoO3 oxides with several compositions, followed by a calcination step at several temperatures. The resulting oxide system develops yellow and green tones. The XRD patterns showed only traces of MoO 3; however, EDS results, combined with TG/DTA data, confirmed the presence of molybdenum ions, suggesting that the changes in optical properties of the oxide system is due to the incorporation of Mo ions into the TiO 2 matrix, substituting Ti+4 with Mo+6 ions. The band gap decreased with increasing of MoO3 content; on the other hand, the band gap reached a maximum value at about 850°C to 910°C when plotted as a function of the calcination temperature. The glazes produced showed that the oxide system under study is a potential material for use as abinary ceramic pigment. Copyright © 2013 Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas chromatography with mass spectrometry is frequently used for the quantification of many classes of substances, including alkylphenols. Alkylphenol polyethoxylates are nonionic surfactants used in a wide variety of industrial and consumer applications. Alkylphenol polyethoxylates can degrade to alkylphenols, which are endocrine disruptors. In analytical validation procedures, the most common parameters studied are the detection and quantification limits, linearity, and recovery; however, the matrix effects are sometimes neglected. Although some investigators have evaluated matrix effects, there is no consensus on how to evaluate them during method validation. In this study, the matrix effects of alkylphenol polyethoxylates (nonylphenol monoethoxylate, nonylphenol diethoxylate, octylphenol monoethoxylate, octylphenol diethoxylate) and alkylphenols (nonylphenol and octylphenol) were studied using solid phase extraction and gas chromatography-mass spectrometry analysis. For alkylphenol polyethoxylates, the matrix effects ranged from 16 to 4692%, whereas for alkylphenols (nonylphenol and octylphenol), the effects were insignificant. Therefore, constructing an analytical curve in the matrix for alkylphenol polyethoxylates is essential. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten oxide/titania (WO3/TiO2) nanopowders were synthesized by the polymeric precursor method which varied the WO3 content between 0 and 10 mol%. The powders were thermally treated in a conventional furnace and their structural, microstructural and electric properties were evaluated by X-ray diffraction (XRD), Raman spectrometry, N 2 physisorption, NH3 chemisorption, temperature-programmed reduction (TPR), X-ray absorption near-edge spectroscopy (XANES) in situ XANES and extended X-ray absorption fine structure spectroscopy (EXAFS) and transmission electron microscopy (TEM). XRD and Raman spectrometry confirmed the homogeneous distribution of an amorphous WO3 phase in the TiO 2 matrix which stabilized the anatase phase through the generation of [TiO5·V0] or [TiO5·V 0] complex sites. Conventional TPR-H2 (temperature programmed reduction) along with XANES TPR-H2 and XANES TPR-EtOH showed that WO3/TiO2 sample reduction occurs through the formation of these complex clusters. Moreover, the addition of WO3 promoted an increase in the surface acidity of doped samples as revealed by NH3 chemisorption. The WO3/TiO2 bulk-ceramic samples were further used to estimate their potential application in a humidity sensor in the range of 15-85% relative humidity. Probable reasons that lead to the different humidity sensor responses of samples were given based on the structural and surface characterizations. Correlation between the sensing performance of the sensor and its structural features are also discussed. Although all samples responded as a humidity sensor, the W2T sample (2 mol% added WO3) excelled for sensitivity due to the increase in acid sites, optimum mean pore size and pore size distribution. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examining three bleaching systems, this in vivo clinical trial evaluated the relationship among tooth sensitivity, light activation, and agent concentration, and it correlated dental sensitivity with tooth thickness.Materials and Methods: Eighty-seven volunteer patients were included. Inclusion criteria were the presence of anterior teeth without restorations as well as the absence of a previous bleaching experience and absence of non-carious cervical lesions or dental pain. Exclusion criteria included pregnancy or breastfeeding, a maximum of TF3 hypoplasia, tetracycline-fluorosis stains, malpositioned teeth, orthodontic treatment, periodontal disease, and/or analgesic/anti-inflammatory intake. Patients were randomly assigned to three bleaching groups: Group A (n=25) was treated with 15% H2O2 and nitrogenous-titanium-dioxide and was light activated (Lase Peroxide Lite, DMC, SaoCarlos, Sao Paulo, Brazil); Group B (n=27) was treated with 35% H2O2 and was light activated (Lase Peroxide Sensy, DMC); and Group C (n=35) was treated with 35% H2O2 (White Gold Office, Dentsply, 38West Clark Ave., Milford, USA) without light activation. Tooth sensitivity (TS) was self-reported by the patients using the visual analog scale (VAS) at baseline (TSO), immediately after treatment (TSI), and at seven days after treatment (TS7). In 46 patients, tooth thickness was determined by computed tomography. TSO, TSI, and TS7 were compared between the A and B groups to determine the effect of concentration and between the B and C groups to determine the effect of light using analysis of covariance. The correlation between tooth thickness and TSI was determined by Spearman Rho test (SPSS 15).Results: Eighty-seven patients were evaluated at baseline, and 61 were evaluated at seven days. Separated by groups, tooth sensitivity, expressed as VAS value at the time points TS0, TS1, and TS7, respectively, were as follows: Group A: 13.76 +/- 13.53, 24.40 +/- 25.24, and 5.94 +/- 5.5; Group B: 15.07 +/- 18.14, 42.4 +/- 31.78, and 8.68 +/- 17.99; and Group C: 10.80 +/- 14.83, 31.51 +/- 29.34, and 7.24 +/- 9.2. Group A showed significantly lower tooth sensitivity than group B at TSI (p=0.032). No differences were observed in the tooth sensitivities between groups B and C. No correlation was encountered between tooth thickness and tooth sensitivity immediately after treatment (Rho=-0.088,p=0.563). The median tooth thickness was 2.78 +/- 0.21 mm.Conclusions: Increases in the concentration of bleaching agents directly affect tooth sensitivity, and LED/laser activation and tooth thickness are not correlated with tooth sensitivity after dental bleaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotechnology, the science of minuscule, has developed products which are able t o manipulate atoms and molecules that could be applied in the sterilization process of dental instruments. Objetives: The objective of the present study was to evaluate the self-cleaning action of TiO2 and Ag nanoparticles coating on dental instruments by the photocataliys process under UV and visible light irradiation. Material and method: Microbiologic tests were done using dental cement spatulas coated with TiO2 and Ag nanoparticles (one or three layers), and contaminated with 10 mcrl of Pseudomonas aeruginosa and Enterococcus faecalis, respectively. After contamination, they were exposed to ultraviolet light and visible light for 120 minutes. Next, they were transferred to and stored in test tubes with BHI (Brain Heart Infusion) and incubated in 35 to 37 °C. Checking times for bacterial growth and for control and retrieval tests were done at: 24, 48, 72 and 96 hours. Result: The Pseudomonas aeruginosa was inactive after 120 minutes of ultraviolet light irradiation, thus confirming the heterogeneous photocatalytic activity of TiO2 and Ag. The Pseudomonas aeruginosa was not inactivated under visible light irradiation and the Enterococcus faecalis was not inactivated under UV and visible light irradiation of the dental cement spatulas coated with TiO2 and Ag nanoparticles in the readings to 96 hours, showing bacterial growth. Conclusion: There were no influence of one or three layers of TiO2 and Ag nanoparticles coating of the spatulas in the results. The heterogeneous photocatalysis activity of TiO2 and Ag under UV light irradiation was confirmed for Pseudomonas aeruginosa but not under visible light. Enterococcus faecalis did not confirmed the photocatalytics activity of TiO2 and Ag under UV light irradiation and visible lights irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water disinfection usually requires expensive chemicals or equipment. Chlorination is a common disinfection method, although it is not able to inactivate all pathogens. High concentrations of residual chlorine also cause an unpleasant taste and smell in drinking water. As an alternative, photocatalysis and photoelectrochemical treatment has a high disinfection potential in drinking water by using solid catalysts, such as titanium dioxide. Highly reactive hydroxyl radical generated during the process serves as the main oxidant, capable of inactivating a wide range of microorganisms. In this study, we proposed a novel comparison between Gram-positive and gram-negative microorganisms. An immobilized TiO2 film promoted higher efficiency in water disinfection processes. The treatment effectively inactivated Escherichia coli and Staphylococcus aureus bacterial microorganisms in a shorter period than other alternative methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of calcium titanate, CaTiO3, was performed by mechanical activation and thermal treatment. Milling for up to 360 minutes in a planetary ball mill mechanically activated an equimolar mixture of CaCO 3 and TiO2 powders. A small amount of mechanically activated mixtures was pressed into briquettes and calcined at 850°C for two hours. The effect of mechanical activation on the solid-state reaction was studied using X-ray powder diffraction and differential thermal analysis. The change of morphology and size of powder particles due to milling, were determined by SEM, while BET analysis was used to determine the specific surface area of the powder. The sintering process was followed by a dilatometer during thermal treatment up to 1300°C. The main conclusion of the analysis of conducted investigations is that CaTiO3 ceramics can be obtained from an activated mixture at a much lower temperature than reported in the literature owing to acceleration of the chemical reaction and sintering.