989 resultados para Phosphate buffer solutions
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
In this study, folates were evaluated in the main species of mushroom cultivated in Brazil. The species analysed were Agaricus bisporus (button mushroom), Lentinula edodes (shiitake) and Pleorotus ostreatus (shimeji). The five main forms of folate found in foods were determined: tetrahydrofolic acid (THFA), 10-methyl folic acid (10MFA), 5-methyl tetrahydrofolic acid (5MTHFA), 10-formyl folic acid (10FFA) and 5-formy tetrahydrofolic acid (5FTHFA). The methodology employed used extraction with phosphate buffer, clean up with trichloroacetic acid and separation of the vitamins by high-performance liquid chromatography, with simultaneous ultraviolet and fluorescence detection. The results obtained for total folate were 551 to 1404 µg.100 g -1 for the button mushroom, 606 to 727 µg.100 g -1 for shiitake and 460 to 1325 µg.100 g-1 for shimeji. The data showed that mushrooms could be considered as sources of folates and that their contribution of these vitamins to the diet was meaningful.
Resumo:
A biosensor was developed for spectrophotometric determination of glucose concentrations in real samples of orange juice energetic drinks, and sport drinks. The biosensor consisted of glucose oxidase (GOD) and horseradish peroxidase (HRP) immobilized onto polyaniline activated with glutaraldehyde (PANIG). Immobilization parameters were optimized for GOD, and maximum immobilization yield was 16% when 5.0 mg of PANIG and 8.9 U prepared in 0.1 mol.L-1 sodium phosphate buffer (pH 7.0) reacted for 60 minutes at 4 °C with gentle stirring. The linear operational range for glucose determination using optimized operational parameters was between 0.05 and 6.0 mg.mL-1 with a very good reproducibility of response. The results obtained in the biosensor were compared with those obtained using free enzymes (commercial kits) and then validated through statistical analysis using the Tukey test (95% confidence interval).
Resumo:
Phycobilisomes are the major light harvesting complexes for cyanobacteria and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. The phycocyanobilin lyases responsible for chromophorylating the phycocyanin p subunit (CpcB) have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin. 10K absorbance measurements revealed that the energy states of the p phycocyanin chromophores were only subtly shifted; however, 77K steady state fluorescence emission spectroscopy showed excitation energy transfer involving the targeted chromophores to be highly disrupted. Such evidence suggests that phycobilin orientation within the binding domain is specifically modified. We hypothesized that alternate, less specific lyases are able to act on the p binding sites. A phycocyanin linker-polypeptide deficient mutant was similarly characterized. The light state transition, a short term adaptation of the photosynthetic light harvesting apparatus resulting in the redistribution of excitation energy among the photo systems, was shown to be dominated by the reallocation of phycocyanin-absorbed excitation energy. Treatment with a high M phosphate buffer effectively prevented the redistribution of both chlorophyll a- and phycobilisome- absorbed excitation energy, suggesting that the two effects are not strictly independent. The mutant strains required a larger redistribution of excitation energy between light states, perhaps to compensate for their loss in phycobilisome antenna function.
Resumo:
Modifications to the commercial hydride generator, manufactured by Spectrametrics, resulted in improved operating procedure and enhancement of the arsenic and germanium signals. Experiments with arsenic(III) and arsenic(V) showed that identical reiults could be produced from both oxidation states. However, since arsenic(V) is reduced more slowly than arsenic(III), peak areas and not peak heights must be measured when the arsine is immediately stripped from the system (approximately 5 seconds reaction). When the reduction is allowed to proceed for 20 seconds before the arsine is stripped, peak heights may be used. For a 200 ng/mL solution, the relative standard deviation is 2.8% for As(III) and 3.8% for As(V). The detection limit for arsenic using the modified system is 0.50 ng/mL. Studies performed on As(V) standards show that the interferences from 1000 mg/L of nickel(II), cobalt(II), iron(III), copper(II), cadmium(II), and zinc(II) can be eliminated with the aid of 5 M Hel and 3% L-cystine. Conditions for the reduction of germanium to the corresponding hydride were investigated. The effect of different concentrations of HCl on the reduction of germanium to the covalent hydride in aqueous media by means of NaBH 4 solutions was assessed. Results show that the best response is accomplished at a pH of 1.7. The use of buffer solutions was similarly characterized. In both cases, results showed that the element is best reduced when the final pH of the solution after reaction is almost neutral. In addition, a more sensitive method, which includes the use of (NH4)2S208' has been developed. A 20% increase in the germanium signal is registered when compared to the signal achieved with Hel alone. Moreover, under these conditions, reduction of germanium could be accomplished, even when the solution's pH is neutral. For a 100 ng/mL germanium standard the rsd is 3%. The detection limit for germanium in 0.05 M Hel medium (pH 1.7) is 0.10 ng/mL and 0.09 ng/mL when ammonium persulphate is used in conjunction with Hel. Interferences from 1000 mg/L of iron(III), copper(II), cobalt(II), nickel(II), cadmium(II), lead(II), mercury(II), aluminum(III), tin(IV), arsenic(III), arsenic(V) and zinc(II) were studied and characterized. In this regard, the use of (NH4)ZS20S and Hel at a pH of 1.7 proved to be a successful mixture in the sbppression of the interferences caused by iron, copper, aluminum, tin, lead, and arsenic. The method was applied to the determination of germanium in cherts and iron ores. In addition, experiments with tin(IV) showed that a 15% increase in the tin signal can be accomplished in the presence of 1 mL of (NH4)2S20S 10% (m/V).
Resumo:
A metalloporphyrin incorporated carbon paste sensor has been developed for the determination of metronidazole benzoate (MTZB). Zn(II) complex of 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrin (TMHPP) was used as the active material. The MTZB gave a well-defined reduction peak at - 0.713V in 0.1 mol l -1 phosphate buffer solution of pH around 7. Compared with bare carbon paste electrode (CPE), the TMHPP Zn(II) modified electrode significantly enhanced the reduction peak current of MTZB as well as lowered its reduction potential. Under optimum conditions the reduction peak current was proportional to MTZB concentration over the range 1×10-3 mol1-1 to 1×10-5mol1-1. The detection limit was found to be 4.36×10-6mol1-1 . This sensor has been successfully applied for the determination of MTZB in pharmaceutical formulations and urine samples.
Resumo:
Electroanalytical techniques represent a class of powerful and versatile analytical method which is based on the electrical properties of a solution of the analyte when it is made part of an electrochemical cell. They offer high sensitivity, accuracy, precision and a large linear dynamic range. The cost of instrumentation is relatively low compared to other instrumental methods of analysis. Many solid state electrochemical sensors have been commercialised nowadays. Potentiometry is a very simple electroanalytical technique with extraordinary analytical capabilities. Since valinomycin was introduced as an ionophore for K+, Ion Selective Electrodes have become one of the best studied and understood analytical devices. It can be used for the determination of substances ranging from simple inorganic ions to complex organic molecules. It is a very attractive option owing to the wide range of applications and ease of the use of the instruments employed. They also possess the advantages of short response time, high selectivity and very low detection limits. Moreover, analysis by these electrodes is non-destructive and adaptable to small sample volumes. It has become a standard technique for medical researchers, biologists, geologists and environmental specialists. This thesis presents the synthesis and characterisation of five ionophores. Based on these ionophores, nine potentiometric sensors are fabricated for the determination of ions such as Pb2+, Mn2+, Ni2+, Cu2+ and Sal- ion (Salicylate ion). The electrochemical characterisation and analytical application studies of the developed sensors are also described. The thesis is divided into eight chapters
Resumo:
Voltammetric methods are applicable for the determination of a wide variety of both organic and inorganic species. Its features are compact equipment, simple sample preparation, short analysis time, high accuracy and sensitivity. Voltammetry is especially suitable for laboratories in which only a few parameters have to be monitored with a moderate sample throughput. Of various electrode materials, glassy carbon electrode is particularly useful because of its high electrical conductivity, impermeability to gases, high chemical resistance, reasonable mechanical and dimensional stability and widest potential range of all carbonaceous electrodes. Electrode modification is a vigorous research area by which the electrochemical determination of various analyte species is facilitated. The scope of pharmaceutical analysis includes the analytical investigation of pure drug, drug formulations, impurities and degradation products of drugs, biological samples containing the drugs and their metabolites with the aim of obtaining data that can contribute to the maximal efficacy and maximal safety of drug therapy. This thesis presents the modification of glassy carbon electrode using metalloporphyrin and dyes and subsequently using these modified electrodes for the determination of various pharmaceuticals. The thesis consists of 9 chapters.
Resumo:
Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine
Resumo:
Oxidised low density lipoprotein (LDL) may play a role in atherogenesis. We have investigated some of the mechanisms by which the thiol cysteine and the disulphide cystine can influence the oxidation of LDL by copper ions. Cysteine or cystine (100 PM) inhibited the oxidation of native LDL by copper in a simple phosphate buffer. One of the mechanisms by which cysteine (or more likely its oxidation products in the presence of copper) and cystine inhibited LDL oxidation was by decreasing the binding of copper to LDL (97% inhibition). Cysteine, but not cystine, rapidly reduced Cu2+ to Cu+. This may help to explain the antioxidant effect of cysteine as it may limit the amount of Cu2+ that is available to convert alpha-tocopherol in LDL into the prooxidant alpha-tocopherol radical. Cysteine (but not cystine) had a prooxidant effect, however, toward partially oxidised LDL in the presence of a low copper concentration, which may have been due to the rapid breakdown of lipid hydroperoxides in partially oxidised LDL by Cu+ generated by cysteine. To prove that cysteine can cause the rapid breakdown of lipid hydroperoxides in LDL, we enriched LDL with lipid hydroperoxides using an azo initiator in the absence of copper. Cysteine, but not cystine, increased the rate of lipid hydroperoxide decomposition to thiobarbituric acid-reactive substances (TBARS) in the presence of copper. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Four different beta-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4-5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4-6.8). Na+ and/or K+ ions were prerequisite for BbgI and BbgIV activity in Bis-Tris-buffered solutions, whereas Mg++ was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg++, Mn++ and Ca++ ions exerting the most positive effect. Determination of the specificity constants (k(cat)/K-m) clearly indicated that BbgI (6.11 x 10(4) s(-1) M-1), BbgIII (2.36 x 10(4) s(-1) M-1) and especially BbgIV (4.01 x 10(5) s(-1) M-1) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for beta-D-(1 -> 6) galactobiose (5.59 x 10(4) s(-1) M-1) than lactose (1.48 x 10(3) s(-1) M-1). Activity measurements towards other substrates (e. g. beta-D-(1 -> 6) galactobiose, beta-D-(1 -> 4) galactobiose, beta-D-(1 -> 4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the beta-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.
Resumo:
RNase A (1 mM) was incubated with glucose (0.4 M) at 37°C for up to 14 days in phosphate buffer (0.2 M, pH 7.4), digested with trypsin and analysed by LC-MS. The major sites of fructoselysine formation were Lys1, Lys7, Lys37 and Lys41. Three of these sites (Lys7, Lys37 and Lys41) were also the major sites of Ne-(carboxymethyl)lysine formation.
Resumo:
Proteomic analysis using electrospray liquid chromatography-mass spectrometry (ESI-LC-MS) has been used to compare the sites of glycation (Amadori adduct formation) and carboxymethylation of RNase and to assess the role of the Amadori adduct in the formation of the advanced glycation end-product (AGE), N-is an element of-(carboxymethyl)lysine (CIVIL). RNase (13.7 mg/mL, 1 mM) was incubated with glucose (0.4 M) at 37 degreesC for 14 days in phosphate buffer (0.2 M, pH 7.4) under air. On the basis of ESI-LC-MS of tryptic peptides, the major sites of glycation of RNase were, in order, K41, K7, K1, and K37. Three of these, in order, K41, K7, and K37 were also the major sites of CIVIL formation. In other experiments, RNase was incubated under anaerobic conditions (1 mM DTPA, N-2 purged) to form Amadori-modified protein, which was then incubated under aerobic conditions to allow AGE formation. Again, the major sites of glycation were, in order, K41, K7, K1, and K37 and the major sites of carboxymethylation were K41, K7, and K37. RNase was also incubated with 1-5 mM glyoxal, substantially more than is formed by autoxidation of glucose under experimental conditions, but there was only trace modification of lysine residues, primarily at K41. We conclude the following: (1) that the primary route to formation of CIVIL is by autoxidation of Amadori adducts on protein, rather than by glyoxal generated on autoxidation of glucose; and (2) that carboxymethylation, like glycation, is a site-specific modification of protein affected by neighboring amino acids and bound ligands, such as phosphate or phosphorylated compounds. Even when the overall extent of protein modification is low, localization of a high proportion of the modifications at a few reactive sites might have important implications for understanding losses in protein functionality in aging and diabetes and also for the design of AGE inhibitors.
Resumo:
Antioxidant properties in food are dependent on various parameters. These include the pH value and interactions with food components, including proteins or metal ions. food components affect antioxidant stability and also influence the properties of microorganisms and their viability. This paper describes an investigation of the effect of pH on the antioxidant and antibacterial properties of caffeic acid in different media. The pH values studied, using an oil-in-water emulsion as model system, were 3, 5 (with and without phosphate buffer), and 9. Effects of mixtures of caffeic acid, bovine serum albumin (BSA), and Fe (III) on oxidative deterioration in the emulsion samples were studied. The results show that the antioxidant activity of caffeic acid was increased by the presence of BSA. This effect was pH dependent and was affected by the presence of iron Ions. Antibacterial properties were also pH dependent. The minimum concentration of caffeic acid required to inhibit some microorganisms in the pH range of 5 to 7 was determined. A concentration of 0.41% (w/w) caffeic acid was enough to inhibit the growth of some of the studied microorganisms in the pH range of 5 to 7. However, near-neutral pH concentrations higher than 0.4% were needed to inhibit some microorganisms, including Listeria monocytogenes, E. coli, and Staphylococcus aureus, in the medium.
Resumo:
Two novel tyrosinase mediated drug delivery pathways have been investigated for the selective delivery of cytotoxic units to melanocytes from urea and thiourea prodrugs. The synthesis of these prodrugs is reported, as well as oximetry data that illustrate that the targets are substrates for tyrosinase. The stability of each of the prodrugs in (i) phosphate buffer and (ii) bovine serum is discussed, and the urea prodrugs are identified as lead candidates for further studies. Finally, HPLC studies and preliminary cytotoxicity studies in a melanotic and an amelanotic cell line, that illustrate the feasibility of the approach, are presented.