889 resultados para Phenotypic Plasticity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gibberellin (GA) is a growth promoting hormone implicated in regulating a diversity of plant processes. This dissertation examines the role of GA metabolic and signaling genes in woody plant growth and development. Transgenic modifications, expression analysis, physiological/biochemical assays, biometric measurements and histological analysis were used to understand the regulatory roles these genes play in the model woody plant, Populus. Our results highlight the importance of GA regulatory genes in woody perennial growth, including: phenology, wood formation, phenotypic plasticity, and growth/survival under field conditions. We characterize two putative Populus orthologs of the SHORT INTERNODES (SHI) gene from Arabidopsis, a negative regulator of GA signaling. RNAi-mediated suppression of Populus SHI-like genes increased several growth-related traits, including extent of xylem proliferation, in a dose-dependent manner. Three Populus genes, sharing sequence homology to the positive regulator of GA signaling gene PHOTOPERIOD-RESPONSIVE 1 (PHOR1) from Solanum, are up-regulated in GA-deficient and insensitive plants suggesting a conserved role in GA signaling. We demonstrate that Populus PHOR1-like genes have overlapping and divergent function(s). Two PHOR1-like genes are highly expressed in roots, predominantly affect root growth (e.g., morphology, starch quantity and gravitropism), and induced by short-days (SD). The other PHOR1-like gene is ubiquitously expressed with a generalized function in root and shoot development. The effects of GA catabolic and signaling genes on important traits (e.g., adaptive and productivity traits) were studied in a multi-year field trial. Transgenics overexpressing GA 2-oxidase (GA2ox) and DELLA genes showed tremendous variation in growth, form, foliage, and phenology (i.e., vegetative and reproductive). Observed gradients in trait modifications were correlated to transgene expression levels, in a manner suggesting a dose-dependent relationship. We explore GA2ox and DELLA genes involvement in mediating growth responses to immediate short-term drought stress, and SD photoperiods, signaling prolonged periods of stress (e.g., winter bud dormancy). GA2ox and DELLA genes show substantial up-regulation in response to drought and SDs. Transgenics overexpressing homologs of these genes subjected to drought and SD photoperiods show hypersensitive growth restraint and increased stress resistances. These results suggest growth cessation (i.e., dormancy) in response to adverse conditions is mediated by GA regulatory genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Small ruminant lentiviruses escaping efficient serological detection are still circulating in Swiss goats in spite of a long eradication campaign that essentially eliminated clinical cases of caprine arthritis encephalitis in the country. This strongly suggests that the circulating viruses are avirulent for goats.To test this hypothesis, we isolated circulating viruses from naturally infected animals and tested the in vitro and in vivo characteristics of these field isolates. METHODS Viruses were isolated from primary macrophage cultures. The presence of lentiviruses in the culture supernatants was monitored by reverse transcriptase assay. Isolates were passaged in different cells and their cytopathogenic effects monitored by microscopy. Proviral load was quantified by real-time PCR using customized primer and probes. Statistical analysis comprised Analysis of Variance and Bonferroni Multiple Comparison Test. RESULTS The isolated viruses belonged to the small ruminant lentiviruses A4 subtype that appears to be prominent in Switzerland. The 4 isolates replicated very efficiently in macrophages, displaying heterogeneous phenotypes, with two isolates showing a pronounced cytopathogenicity for these cells. By contrast, all 4 isolates had a poor replication capacity in goat and sheep fibroblasts. The proviral loads in the peripheral blood and, in particular, in the mammary gland were surprisingly high compared to previous observations. Nevertheless, these viruses appear to be of low virulence for goats except for the mammary gland were histopathological changes were observed. CONCLUSIONS Small ruminant lentiviruses continue to circulate in Switzerland despite a long and expensive caprine arthritis encephalitis virus eradication campaign. We isolated 4 of these lentiviruses and confirmed their phylogenetic association with the prominent A4 subtype. The pathological and histopathological analysis of the infected animals supported the hypothesis that these A4 viruses are of low pathogenicity for goats, with, however, a caveat about the potentially detrimental effects on the mammary gland. Moreover, the high proviral load detected indicates that the immune system of the animals cannot control the infection and this, combined with the phenotypic plasticity observed in vitro, strongly argues in favour of a continuous and precise monitoring of these SRLV to avoid the risk of jeopardizing a long eradication campaign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Roots respond dynamically to belowground herbivore attack. Yet, little is known about the mechanisms and ecological consequences of these responses. Do roots behave the same way as leaves, or do the paradigms derived from aboveground research need to be rewritten? This is the central question that we tackle in this article. To this end, we review the current literature on induced root defenses and present a number of experiments on the interaction between the root herbivore Diabrotica virgifera and its natural host, maize. Currently, the literature provides no clear evidence that plants can recognize root herbivores specifically. In maize, mild mechanical damage is sufficient to trigger a root volatile response comparable to D. virgifera induction. Interestingly, the jasmonate (JA) burst, a highly conserved signaling event following leaf attack, is consistently attenuated in the roots across plant species, from wild tobacco to Arabidopsis. In accordance, we found only a weak JA response in D. virgifera attacked maize roots. Despite this reduction in JA-signaling, roots of many plants start producing a distinct suite of secondary metabolites upon attack and reconfigure their primary metabolism. We, therefore, postulate the existence of additional, unknown signals that govern induced root responses in the absence of a jasmonate burst. Surprisingly, despite the high phenotypic plasticity of plant roots, evidence for herbivore-induced resistance below ground is virtually absent from the literature. We propose that other defensive mechanisms, including resource reallocation and compensatory growth, may be more important to improve plant immunity below ground.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid morphological changes in response to fluctuating natural environments are a common phenomenon in species that undergo adaptive radiation. The dramatic ecological changes in Lake Victoria provide a unique opportunity to study environmental effects on cichlid morphology. This study shows how four haplochromine cichlids adapted their premaxilla to a changed diet over the past 30 years. Directly after the diet change toward larger and faster prey in the late 1980s, the premaxilla (upper jaw) changed in a way that is in agreement with a more food manipulating feeding style. During the 2000s, two zooplanktivorous species showed a reversal of morphological changes after returning to their original diet, whereas two other species showed no reversal of diet and morphology. These rapid changes indicate a potential for extremely fast adaptive responses to environmental fluctuations, which are likely inflicted by competition release and increase, and might have a bearing on the ability of haplochromines to cope with environmental changes. These responses could be due to rapid genetic change or phenotypic plasticity, for which there is ample evidence in cichlid fish structures associated with food capture and processing. These versatile adaptive responses are likely to have contributed to the fast adaptive radiation of haplochromines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

• Premise of the study: Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments. • Methods: We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain’s slope and measured performance, reproductive, and phenological traits. • Results: Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values. • Conclusions: We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

African cichlid fishes have undergone outbursts of explosive speciation in several lakes, accompanied by rapid radiations in coloration and ecology. Little is known about the evolutionary forces that triggered these events but a hypothesis, published by Wallace Dominey in 1984, has figured prominently. It states that the evolution of colour patterns is driven by sexual selection and that these colour patterns are important in interspecific mate choice, a combination which holds the potential for rapid speciation. Here we present phylogenetic analyses that describe major events in colour evolution and test predictions yielded by Dominey's hypothesis. We assembled information on stripe patterns and the presence or absence of nuptial coloration from more than 700 cichlid species representing more than 90 taxa for which molecular phylogenetic hypotheses were available. We show that sexual selection is most likely the selection force that made male nuptial coloration arise and evolve quickly. In contrast, stripe patterns, though phylogenetically not conserved either, are constrained ecologically. The evolution of vertical bar patterns is associated with structurally complex habitats, such as rocky substrates or vegetation. The evolution of a horizontal stripe is associated with a piscivorous feeding mode. Horizontal stripes are also associated with shoaling behaviour. Strength of sexual selection, measured in terms of the mating system (weak in monogamous, strong in promiscuous species), has no detectable effects on stripe pattern evolution. In promiscuous species the frequency of difference between sister species in nuptial hue is higher than in pair bonding and harem forming species, but the frequency of difference in stripe pattern is lower. We argue that differences between the two components of coloration in their exposure to natural selection explain their very different evolutionary behaviour. Finally, we suggest that habitat-mediated selection upon chromomotor flexibility, a special form of phenotypic plasticity found in the river-dwelling outgroups of the lake-dwelling cichlids, explains the rapid and recurrent ecology-associated radiation of stripe patterns in lake environments, a new hypothesis that yields experimentally testable predictions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current context of environmental change, ocean acidification is predicted to affect the cellular processes, physiology and behaviour of all marine organisms, impacting survival, growth and reproduction. In relation to thermal tolerance limits, the effects of elevated pCO2 could be expected to be more pronounced at the upper limits of the thermal tolerance window. Our study focused on Crepidula fornicata, an invasive gastropod which colonized shallow waters around European coasts during the 20th century. We investigated the effects of 10 weeks' exposure to current (380 µatm) and elevated (550, 750, 1,000 µatm) pCO2 on this engineer species using an acute temperature increase (1 °C/12 h) as the test. Respiration rates were measured on both males (small individuals) and females (large individuals). Mortality increased suddenly from 34 °C, particularly in females. Respiration rate in C. fornicata increased linearly with temperature between 18 and 34 °C, but no differences were detected between the different pCO2 conditions either in the regressions between respiration rate and temperature or in Q10 values. In the same way, condition indices were similar in all the pCO2 treatments at the end of the experiment, but decreased from the beginning of the experiment. This species was highly resistant to acute exposure to high temperature regardless of pCO2 levels, even though food was limited during the experiment. Crepidula fornicata appears to have either developed resistance mechanisms or a strong phenotypic plasticity to deal with fluctuations of physicochemical parameters in its habitat. This suggests that invasive species may be more resistant to future environmental changes than its native competitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by 20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.