955 resultados para Pharmacopoeias as Topic
Resumo:
Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.
Resumo:
There is a tendency to view conversations involving non-native speakers (NNSs) as inevitably fraught with problems, including an inability to handle topic management. This article, in contrast, will focus on effective topic changes made by non-native speakers during informal conversations with native speakers of English. A micro-analysis of ten conversations revealed several ways of shifting conversational topics; however, the article concentrates on those strategies which the participants used to effect a particular type of topic move, namely 'marked topic changes', where there is no connection at all with previous talk. The findings show how these topic changes were jointly negotiated, and that the non-native speakers' contributions to initiating new topics were competently managed.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Postprint
Resumo:
Peer reviewed
Resumo:
The Twitter System is the biggest social network in the world, and everyday millions of tweets are posted and talked about, expressing various views and opinions. A large variety of research activities have been conducted to study how the opinions can be clustered and analyzed, so that some tendencies can be uncovered. Due to the inherent weaknesses of the tweets - very short texts and very informal styles of writing - it is rather hard to make an investigation of tweet data analysis giving results with good performance and accuracy. In this paper, we intend to attack the problem from another aspect - using a two-layer structure to analyze the twitter data: LDA with topic map modelling. The experimental results demonstrate that this approach shows a progress in twitter data analysis. However, more experiments with this method are expected in order to ensure that the accurate analytic results can be maintained.
Resumo:
When something unfamiliar emerges or when something familiar does something unexpected people need to make sense of what is emerging or going on in order to act. Social representations theory suggests how individuals and society make sense of the unfamiliar and hence how the resultant social representations (SRs) cognitively, emotionally, and actively orient people and enable communication. SRs are social constructions that emerge through individual and collective engagement with media and with everyday conversations among people. Recent developments in text analysis techniques, and in particular topic modeling, provide a potentially powerful analytical method to examine the structure and content of SRs using large samples of narrative or text. In this paper I describe the methods and results of applying topic modeling to 660 micronarratives collected from Australian academics / researchers, government employees, and members of the public in 2010-2011. The narrative fragments focused on adaptation to climate change (CC) and hence provide an example of Australian society making sense of an emerging and conflict ridden phenomena. The results of the topic modeling reflect elements of SRs of adaptation to CC that are consistent with findings in the literature as well as being reasonably robust predictors of classes of action in response to CC. Bayesian Network (BN) modeling was used to identify relationships among the topics (SR elements) and in particular to identify relationships among topics, sentiment, and action. Finally the resulting model and topic modeling results are used to highlight differences in the salience of SR elements among social groups. The approach of linking topic modeling and BN modeling offers a new and encouraging approach to analysis for ongoing research on SRs.
Resumo:
Research in ubiquitous and pervasive technologies have made it possible to recognise activities of daily living through non-intrusive sensors. The data captured from these sensors are required to be classified using various machine learning or knowledge driven techniques to infer and recognise activities. The process of discovering the activities and activity-object patterns from the sensors tagged to objects as they are used is critical to recognising the activities. In this paper, we propose a topic model process of discovering activities and activity-object patterns from the interactions of low level state-change sensors. We also develop a recognition and segmentation algorithm to recognise activities and recognise activity boundaries. Experimental results we present validates our framework and shows it is comparable to existing approaches.
Resumo:
Critical thinking in learners is a goal of educators and professional organizations in nursing as well as other professions. However, few studies in nursing have examined the role of the important individual difference factors topic knowledge, individual interest, and general relational reasoning strategies in predicting critical thinking. In addition, most previous studies have used domain-general, standardized measures, with inconsistent results. Moreover, few studies have investigated critical thinking across multiple levels of experience. The major purpose of this study was to examine the degree to which topic knowledge, individual interest, and relational reasoning predict critical thinking in maternity nurses. For this study, 182 maternity nurses were recruited from national nursing listservs explicitly chosen to capture multiple levels of experience from prelicensure to very experienced nurses. The three independent measures included a domain-specific Topic Knowledge Assessment (TKA), consisting of 24 short-answer questions, a Professed and Engaged Interest Measure (PEIM), with 20 questions indicating level of interest and engagement in maternity nursing topics and activities, and the Test of Relational Reasoning (TORR), a graphical selected response measure with 32 items organized in scales corresponding to four forms of relational reasoning: analogy, anomaly, antithesis, and antinomy. The dependent measure was the Critical Thinking Task in Maternity Nursing (CT2MN), composed of a clinical case study providing cues with follow-up questions relating to nursing care. These questions align with the cognitive processes identified in a commonly-used definition of critical thinking in nursing. Reliable coding schemes for the measures were developed for this study. Key findings included a significant correlation between topic knowledge and individual interest. Further, the three individual difference factors explained a significant proportion of the variance in critical thinking with a large effect size. While topic knowledge was the strongest predictor of critical thinking performance, individual interest had a moderate significant effect, and relational reasoning had a small but significant effect. The findings suggest that these individual difference factors should be included in future studies of critical thinking in nursing. Implications for nursing education, research, and practice are discussed.
Resumo:
International audience
Resumo:
Conventional topic models are ineffective for topic extraction from microblog messages since the lack of structure and context among the posts renders poor message-level word co-occurrence patterns. In this work, we organize microblog posts as conversation trees based on reposting and replying relations, which enrich context information to alleviate data sparseness. Our model generates words according to topic dependencies derived from the conversation structures. In specific, we differentiate messages as leader messages, which initiate key aspects of previously focused topics or shift the focus to different topics, and follower messages that do not introduce any new information but simply echo topics from the messages that they repost or reply. Our model captures the different extents that leader and follower messages may contain the key topical words, thus further enhances the quality of the induced topics. The results of thorough experiments demonstrate the effectiveness of our proposed model.
Resumo:
This paper consists of an analysis of the poem “Chama e fumo”, from As Cinzas das Horas, first book by Manuel Bandeira, regarding specially formal aspects and horacian themes within it. Moreover, it is intended to discuss how the modernist poet interweaves elements related both to classic and end of century symbolist tradition, considering some of the main ancient poetry themes, as theorized by Francisco Achcar in his book Lírica e Lugar-comum - Alguns Temas de Horário e sua presença em português, such as the topic of transience and its variations: carpe diem and the invitation to love.