957 resultados para Periodic boundary conditions
Resumo:
Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.
Resumo:
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.
Resumo:
Um código computacional para escoamentos bifásicos incorporando metodologia híbrida entre oMétodo dos Elementos Finitos e a descrição Lagrangeana-Euleriana Arbitrária do movimento é usado para simular a dinâmica de um jato transversal de gotas na zona primária de quebra. Os corpos dispersos são descritos por meio de um método do tipo front-tracking que produz interfaces de espessura zero através de malhas formadas pela união de elementos adjacentes em ambas as fases e de técnicas de refinamento adaptativo. Condições de contorno periódicas são implementadas de modo variacionalmente consistente para todos os campos envolvidos nas simulações apresentadas e uma versão modificada do campo de pressão é adicionada à formulação do tipo um-fluido usada na equação da quantidade de movimento linear. Simulações numéricas diretas em três dimensões são executadas para diferentes configurações de líquidos imiscí veis compatíveis com resultados experimentais encontrados na literatura. Análises da hidrodinâmica do jato transversal de gotas nessas configurações considerando trajetórias, variação de formato de gota, espectro de pequenas perturbações, além de aspectos complementares relativos à qualidade de malha são apresentados e discutidos.
Resumo:
Apresenta-se uma abordagemnumérica para ummodelo que descreve a formação de padrões por sputtering iônico na superfície de ummaterial. Esse processo é responsável pela formação de padrões inesperadamente organizados, como ondulações, nanopontos e filas hexagonais de nanoburacos. Uma análise numérica de padrões preexistentes é proposta para investigar a dinâmica na superfície, baseada em ummodelo resumido em uma equação anisotrópica amortecida de Kuramoto-Sivashinsky, em uma superfície bidimensional com condições de contorno periódicas. Apesar de determinística, seu caráter altamente não-linear fornece uma rica gama de resultados, sendo possível descrever acuradamente diferentes padrões. Umesquema semi implícito de diferenças finitas com fatoração no tempo é aplicado na discretização da equação governante. Simulações foram realizadas com coeficientes realísticos relacionados aos parâmetros físicos (anisotropias, orientação do feixe, difusão). A estabilidade do esquema numérico foi analisada por testes de passo de tempo e espaçamento de malha, enquanto a verificação do mesmo foi realizada pelo Método das Soluções Manufaturadas. Ondulações e padrões hexagonais foram obtidos a partir de condições iniciais monomodais para determinados valores do coeficiente de amortecimento, enquanto caos espaço-temporal apareceu para valores inferiores. Os efeitos anisotrópicos na formação de padrões foramestudados, variando o ângulo de incidência.
Resumo:
A microstructure based acoustic model is introduced, which can be used to optimize the microstructure of cellular materials and thus to obtain their optimal acoustic property. This acoustic model is an unsteady one which is appropriate in the limit of low Reynolds numbers. The model involves three elements. This first involves the propagation of acoustic waves passing the cylinders whose axes are aligned parallel to the direction of propagation. The second model relates to the propagation of acoustic waves passing the cylinders whose axes are aligned perpendicular to the direction of propagation. In both cases the interaction between adjacent cylinders is taken into account by considering the effect of polygonal periodic boundary conditions. As these two models are linear they are combined to give the characteristics of propagation at arbitrary incidence. The third model involves propagation passing spheres in order to represent the joints. Heat transfer is also included. These three models are then used to expand the design space and calculate the optimum cell structure for desired acoustic performance in a number of different applications. Moreover, the application fields are also analyzed.
Resumo:
This paper describes how the A -if) formulation may be applied to determine the losses in the stator duct spacers of large a.c. motors. The model is described in terms of its geometry and boundary conditions. The novel aspects of the application of the formulation to this problem are explained. These include the modelling of fixed currents sources (the stator windings), the location of the necessary cut surfaces and the determination of their magnetic scalar potential differences, and the implementation of periodic boundary conditions for vector variables. Results are presented showing how the duct spacer losses vary with load, and with the relative permeability of the spacer material. The effects of modelling iron nonlinearity, of both the spacer and the steel laminations, are also illustrated. © 1996 IEEE.
Resumo:
This paper demonstrates how a finite element model which exploits domain decomposition is applied to the analysis of three-phase induction motors. It is shown that a significant gain in cpu time results when compared with standard finite element analysis. Aspects of the application of the method which are particular to induction motors are considered: the means of improving the convergence of the nonlinear finite element equations; the choice of symmetrical sub-domains; the modelling of relative movement; and the inclusion of periodic boundary conditions. © 1999 IEEE.
Resumo:
The simulation of complex chemical systems often requires a multi-level description, in which a region of special interest is treated using a computationally expensive quantum mechanical (QM) model while its environment is described by a faster, simpler molecular mechanical (MM) model. Furthermore, studying dynamic effects in solvated systems or bio-molecules requires a variable definition of the two regions, so that atoms or molecules can be dynamically re-assigned between the QM and MM descriptions during the course of the simulation. Such reassignments pose a problem for traditional QM/MM schemes by exacerbating the errors that stem from switching the model at the boundary. Here we show that stable, long adaptive simulations can be carried out using density functional theory with the BLYP exchange-correlation functional for the QM model and a flexible TIP3P force field for the MM model without requiring adjustments of either. Using a primary benchmark system of pure water, we investigate the convergence of the liquid structure with the size of the QM region, and demonstrate that by using a sufficiently large QM region (with radius 6 Å) it is possible to obtain radial and angular distributions that, in the QM region, match the results of fully quantum mechanical calculations with periodic boundary conditions, and, after a smooth transition, also agree with fully MM calculations in the MM region. The key ingredient is the accurate evaluation of forces in the QM subsystem which we achieve by including an extended buffer region in the QM calculations. We also show that our buffered-force QM/MM scheme is transferable by simulating the solvated Cl(-) ion.
Resumo:
The recently introduced nested sampling algorithm allows the direct and efficient calculation of the partition function of atomistic systems. We demonstrate its applicability to condensed phase systems with periodic boundary conditions by studying the three dimensional hard sphere model. Having obtained the partition function, we show how easy it is to calculate the compressibility and the free energy as functions of the packing fraction and local order, verifying that the transition to crystallinity has a very small barrier, and that the entropic contribution of jammed states to the free energy is negligible for packing fractions above the phase transition. We quantify the previously proposed schematic phase diagram and estimate the extent of the region of jammed states. We find that within our samples, the maximally random jammed configuration is surprisingly disordered.
Resumo:
We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress-strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models. © 2013 Elsevier Ltd.
Theoretical investigation on the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface
Resumo:
In this paper, the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface were investigated by using cluster (Gaussian 03) and periodic (DMol(3)) ab initio calculations. Si(111) surface was described with cluster models (Si14H17 and Si22H21) and a four-silicon layer slab with periodic boundary conditions. The effect of basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111) surface are large, suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface. With the increase of number, water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation. The Ag+ cation in aqueous solution will safely attach to the clean Si(111) surface.
Resumo:
In this paper we study the influence of interventions on self-interactions in a spatial Prisoner's Dilemma on a two-dimensional grid with periodic boundary conditions and synchronous updating of the dynamics. We investigate two different types of self-interaction modifications. The first type (FSIP) is deterministic, effecting each self-interaction of a player by a constant factor, whereas the second type (PSIP) performs a probabilistic interventions. Both types of interventions lead to a reduction of the payoff of the players and, hence, represent inhibiting effects. We find that a constant but moderate reduction of self-interactions has a very beneficial effect on the evolution of cooperators in the population, whereas probabilistic interventions on self-interactions are in general counter productive for the coexistence of the two different strategies. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the "knee" at 10(15.5) eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.
Resumo:
A new geometry (semiannular) for Josephson junction has been proposed and theoretical studies have shown that the new geometry is useful for electronic applications [1, 2]. In this work we study the voltage‐current response of the junction with a periodic modulation. The fluxon experiences an oscillating potential in the presence of the ac‐bias which increases the depinning current value. We show that in a system with periodic boundary conditions, average progressive motion of fluxon commences after the amplitude of the ac drive exceeds a certain threshold value. The analytic studies are justified by simulating the equation using finite‐difference method. We observe creation and annihilation of fluxons in semiannular Josephson junction with an ac‐bias in the presence of an external magnetic field.