983 resultados para Periodic and chaotic motions
Resumo:
A framework that connects computational mechanics and molecular dynamics has been developed and described. As the key parts of the framework, the problem of symbolising molecular trajectory and the associated interrelation between microscopic phase space variables and macroscopic observables of the molecular system are considered. Following Shalizi and Moore, it is shown that causal states, the constituent parts of the main construct of computational mechanics, the e-machine, define areas of the phase space that are optimal in the sense of transferring information from the micro-variables to the macro-observables. We have demonstrated that, based on the decay of their Poincare´ return times, these areas can be divided into two classes that characterise the separation of the phase space into resonant and chaotic areas. The first class is characterised by predominantly short time returns, typical to quasi-periodic or periodic trajectories. This class includes a countable number of areas corresponding to resonances. The second class includes trajectories with chaotic behaviour characterised by the exponential decay of return times in accordance with the Poincare´ theorem.
Resumo:
This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.
Resumo:
Due to the failure of PRARE the orbital accuracy of ERS-1 is typically 10-15 cm radially as compared to 3-4cm for TOPEX/Poseidon. To gain the most from these simultaneous datasets it is necessary to improve the orbital accuracy of ERS-1 so that it is commensurate with that of TOPEX/Poseidon. For the integration of these two datasets it is also necessary to determine the altimeter and sea state biases for each of the satellites. Several models for the sea state bias of ERS-1 are considered by analysis of the ERS-1 single satellite crossovers. The model adopted consists of the sea state bias as a percentage of the significant wave height, namely 5.95%. The removal of ERS-1 orbit error and recovery of an ERS-1 - TOPEX/Poseidon relative bias are both achieved by analysis of dual crossover residuals. The gravitational field based radial orbit error is modelled by a finite Fourier expansion series with the dominant frequencies determined by analysis of the JGM-2 co-variance matrix. Periodic and secular terms to model the errors due to atmospheric density, solar radiation pressure and initial state vector mis-modelling are also solved for. Validation of the dataset unification consists of comparing the mean sea surface topographies and annual variabilities derived from both the corrected and uncorrected ERS-1 orbits with those derived from TOPEX/Poseidon. The global and regional geographically fixed/variable orbit errors are also analysed pre and post correction, and a significant reduction is noted. Finally the use of dual/single satellite crossovers and repeat pass data, for the calibration of ERS-2 with respect to ERS-1 and TOPEX/Poseidon is shown by calculating the ERS-1/2 sea state and relative biases.
Resumo:
Biological macromolecules can rearrange interdomain orientations when binding to various partners. Interdomain dynamics serve as a molecular mechanism to guide the transitions between orientations. However, our understanding of interdomain dynamics is limited because a useful description of interdomain motions requires an estimate of the probabilities of interdomain conformations, increasing complexity of the problem.
Staphylococcal protein A (SpA) has five tandem protein-binding domains and four interdomain linkers. The domains enable Staphylococcus aureus to evade the host immune system by binding to multiple host proteins including antibodies. Here, I present a study of the interdomain motions of two adjacent domains in SpA. NMR spin relaxation experiments identified a 6-residue flexible interdomain linker and interdomain motions. To quantify the anisotropy of the distribution of interdomain orientations, we measured residual dipolar couplings (RDCs) from the two domains with multiple alignments. The N-terminal domain was directly aligned by a lanthanide ion and not influenced by interdomain motions, so it acted as a reference frame to achieve motional decoupling. We also applied {\it de novo} methods to extract spatial dynamic information from RDCs and represent interdomain motions as a continuous distribution on the 3D rotational space. Significant anisotropy was observed in the distribution, indicating the motion populates some interdomain orientations more than others. Statistical thermodynamic analysis of the observed orientational distribution suggests that it is among the energetically most favorable orientational distributions for binding to antibodies. Thus, the affinity is enhanced by a pre-posed distribution of interdomain orientations while maintaining the flexibility required for function.
The protocol described above can be applied to other biological systems in general. Protein molecule calmodulin and RNA molecule trans-activation response element (TAR) also have intensive interdomain motions with relative small intradomain dynamics. Their interdomain motions were studied using our method based on published RDC data. Our results were consistent with literature results in general. The differences could be due to previous studies' use of physical models, which contain assumptions about potential energy and thus introduced non-experimental information into the interpretations.
Resumo:
We calculate near-threshold bound states and Feshbach resonance positions for atom–rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J=0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J>0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J=0) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.
Resumo:
La vallée du fleuve Saint-Laurent, dans l’est du Canada, est l’une des régions sismiques les plus actives dans l’est de l’Amérique du Nord et est caractérisée par de nombreux tremblements de terre intraplaques. Après la rotation rigide de la plaque tectonique, l’ajustement isostatique glaciaire est de loin la plus grande source de signal géophysique dans l’est du Canada. Les déformations et les vitesses de déformation de la croûte terrestre de cette région ont été étudiées en utilisant plus de 14 ans d’observations (9 ans en moyenne) de 112 stations GPS fonctionnant en continu. Le champ de vitesse a été obtenu à partir de séries temporelles de coordonnées GPS quotidiennes nettoyées en appliquant un modèle combiné utilisant une pondération par moindres carrés. Les vitesses ont été estimées avec des modèles de bruit qui incluent les corrélations temporelles des séries temporelles des coordonnées tridimensionnelles. Le champ de vitesse horizontale montre la rotation antihoraire de la plaque nord-américaine avec une vitesse moyenne de 16,8±0,7 mm/an dans un modèle sans rotation nette (no-net-rotation) par rapport à l’ITRF2008. Le champ de vitesse verticale confirme un soulèvement dû à l’ajustement isostatique glaciaire partout dans l’est du Canada avec un taux maximal de 13,7±1,2 mm/an et un affaissement vers le sud, principalement au nord des États-Unis, avec un taux typique de −1 à −2 mm/an et un taux minimum de −2,7±1,4 mm/an. Le comportement du bruit des séries temporelles des coordonnées GPS tridimensionnelles a été analysé en utilisant une analyse spectrale et la méthode du maximum de vraisemblance pour tester cinq modèles de bruit: loi de puissance; bruit blanc; bruit blanc et bruit de scintillation; bruit blanc et marche aléatoire; bruit blanc, bruit de scintillation et marche aléatoire. Les résultats montrent que la combinaison bruit blanc et bruit de scintillation est le meilleur modèle pour décrire la partie stochastique des séries temporelles. Les amplitudes de tous les modèles de bruit sont plus faibles dans la direction nord et plus grandes dans la direction verticale. Les amplitudes du bruit blanc sont à peu près égales à travers la zone d’étude et sont donc surpassées, dans toutes les directions, par le bruit de scintillation et de marche aléatoire. Le modèle de bruit de scintillation augmente l’incertitude des vitesses estimées par un facteur de 5 à 38 par rapport au modèle de bruit blanc. Les vitesses estimées de tous les modèles de bruit sont statistiquement cohérentes. Les paramètres estimés du pôle eulérien de rotation pour cette région sont légèrement, mais significativement, différents de la rotation globale de la plaque nord-américaine. Cette différence reflète potentiellement les contraintes locales dans cette région sismique et les contraintes causées par la différence des vitesses intraplaques entre les deux rives du fleuve Saint-Laurent. La déformation de la croûte terrestre de la région a été étudiée en utilisant la méthode de collocation par moindres carrés. Les vitesses horizontales interpolées montrent un mouvement cohérent spatialement: soit un mouvement radial vers l’extérieur pour les centres de soulèvement maximal au nord et un mouvement radial vers l’intérieur pour les centres d’affaissement maximal au sud, avec une vitesse typique de 1 à 1,6±0,4 mm/an. Cependant, ce modèle devient plus complexe près des marges des anciennes zones glaciaires. Basées selon leurs directions, les vitesses horizontales intraplaques peuvent être divisées en trois zones distinctes. Cela confirme les conclusions d’autres chercheurs sur l’existence de trois dômes de glace dans la région d’étude avant le dernier maximum glaciaire. Une corrélation spatiale est observée entre les zones de vitesses horizontales intraplaques de magnitude plus élevée et les zones sismiques le long du fleuve Saint-Laurent. Les vitesses verticales ont ensuite été interpolées pour modéliser la déformation verticale. Le modèle montre un taux de soulèvement maximal de 15,6 mm/an au sud-est de la baie d’Hudson et un taux d’affaissement typique de 1 à 2 mm/an au sud, principalement dans le nord des États-Unis. Le long du fleuve Saint-Laurent, les mouvements horizontaux et verticaux sont cohérents spatialement. Il y a un déplacement vers le sud-est d’une magnitude d’environ 1,3 mm/an et un soulèvement moyen de 3,1 mm/an par rapport à la plaque l’Amérique du Nord. Le taux de déformation verticale est d’environ 2,4 fois plus grand que le taux de déformation horizontale intraplaque. Les résultats de l’analyse de déformation montrent l’état actuel de déformation dans l’est du Canada sous la forme d’une expansion dans la partie nord (la zone se soulève) et d’une compression dans la partie sud (la zone s’affaisse). Les taux de rotation sont en moyenne de 0,011°/Ma. Nous avons observé une compression NNO-SSE avec un taux de 3.6 à 8.1 nstrain/an dans la zone sismique du Bas-Saint-Laurent. Dans la zone sismique de Charlevoix, une expansion avec un taux de 3,0 à 7,1 nstrain/an est orientée ENE-OSO. Dans la zone sismique de l’Ouest du Québec, la déformation a un mécanisme de cisaillement avec un taux de compression de 1,0 à 5,1 nstrain/an et un taux d’expansion de 1.6 à 4.1 nstrain/an. Ces mesures sont conformes, au premier ordre, avec les modèles d’ajustement isostatique glaciaire et avec la contrainte de compression horizontale maximale du projet World Stress Map, obtenue à partir de la théorie des mécanismes focaux (focal mechanism method).
Resumo:
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. Motion capture of a free flying insect is considered by using three synchronized high-speed cameras. A solid finite element representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. An objective function is formulated, and various shape difference definitions are considered. The proposed methodology is first studied for a synthetic case of a flexible cantilever structure undergoing large deformations, and then applied to a Manduca Sexta (hawkmoth) in free flight. The three-dimensional motions of this flapping system are reconstructed from image date collected by using three cameras. The complete deformation geometry of this system is analyzed. Finally, a computational investigation is carried out to understand the flow physics and aerodynamic performance by prescribing the body and wing motions in a fluid-body code. This thesis work contains one of the first set of such motion visualization and deformation analyses carried out for a hawkmoth in free flight. The tools and procedures used in this work are widely applicable to the studies of other flying animals with flexible wings as well as synthetic systems with flexible body elements.
Resumo:
Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D-3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z(4) parafermion or a M-(5,M-6) minimal model.
Resumo:
The World Order is a concept in constant mutation that has lost a lot of what characterized it when it was established with the Peace of Westphalia. The conflicts also went through changes. They lost its State distinctiveness and became dispersed and chaotic due to multipolarization. These two concepts share some connections and both dissociated from their traditional definition. This paper aims to establish a connection between the contemporary World Order and the conflicts evolution. The threats to the stability of the World Order contribute to the current disorder and reflects how the conflicts distanced themselves from the clausewitzian battles. To understand how these threats impact the World Order stability and evince the conflicts evolution two cases of study were selected: the nuclear proliferation in Iran and the crisis in Ukraine. These two examples will help establishing the link between the contemporary World Disorder and the conflicts evolution.
Resumo:
This thesis studies mobile robotic manipulators, where one or more robot manipulator arms are integrated with a mobile robotic base. The base could be a wheeled or tracked vehicle, or it might be a multi-limbed locomotor. As robots are increasingly deployed in complex and unstructured environments, the need for mobile manipulation increases. Mobile robotic assistants have the potential to revolutionize human lives in a large variety of settings including home, industrial and outdoor environments.
Mobile Manipulation is the use or study of such mobile robots as they interact with physical objects in their environment. As compared to fixed base manipulators, mobile manipulators can take advantage of the base mechanism’s added degrees of freedom in the task planning and execution process. But their use also poses new problems in the analysis and control of base system stability, and the planning of coordinated base and arm motions. For mobile manipulators to be successfully and efficiently used, a thorough understanding of their kinematics, stability, and capabilities is required. Moreover, because mobile manipulators typically possess a large number of actuators, new and efficient methods to coordinate their large numbers of degrees of freedom are needed to make them practically deployable. This thesis develops new kinematic and stability analyses of mobile manipulation, and new algorithms to efficiently plan their motions.
I first develop detailed and novel descriptions of the kinematics governing the operation of multi- limbed legged robots working in the presence of gravity, and whose limbs may also be simultaneously used for manipulation. The fundamental stance constraint that arises from simple assumptions about friction and the ground contact and feasible motions is derived. Thereafter, a local relationship between joint motions and motions of the robot abdomen and reaching limbs is developed. Baseeon these relationships, one can define and analyze local kinematic qualities including limberness, wrench resistance and local dexterity. While previous researchers have noted the similarity between multi- fingered grasping and quasi-static manipulation, this thesis makes explicit connections between these two problems.
The kinematic expressions form the basis for a local motion planning problem that that determines the joint motions to achieve several simultaneous objectives while maintaining stance stability in the presence of gravity. This problem is translated into a convex quadratic program entitled the balanced priority solution, whose existence and uniqueness properties are developed. This problem is related in spirit to the classical redundancy resoxlution and task-priority approaches. With some simple modifications, this local planning and optimization problem can be extended to handle a large variety of goals and constraints that arise in mobile-manipulation. This local planning problem applies readily to other mobile bases including wheeled and articulated bases. This thesis describes the use of the local planning techniques to generate global plans, as well as for use within a feedback loop. The work in this thesis is motivated in part by many practical tasks involving the Surrogate and RoboSimian robots at NASA/JPL, and a large number of examples involving the two robots, both real and simulated, are provided.
Finally, this thesis provides an analysis of simultaneous force and motion control for multi- limbed legged robots. Starting with a classical linear stiffness relationship, an analysis of this problem for multiple point contacts is described. The local velocity planning problem is extended to include generation of forces, as well as to maintain stability using force-feedback. This thesis also provides a concise, novel definition of static stability, and proves some conditions under which it is satisfied.
Resumo:
Recent developments in micro- and nanoscale 3D fabrication techniques have enabled the creation of materials with a controllable nanoarchitecture that can have structural features spanning 5 orders of magnitude from tens of nanometers to millimeters. These fabrication methods in conjunction with nanomaterial processing techniques permit a nearly unbounded design space through which new combinations of nanomaterials and architecture can be realized. In the course of this work, we designed, fabricated, and mechanically analyzed a wide range of nanoarchitected materials in the form of nanolattices made from polymer, composite, and hollow ceramic beams. Using a combination of two-photon lithography and atomic layer deposition, we fabricated samples with periodic and hierarchical architectures spanning densities over 4 orders of magnitude from ρ=0.3-300kg/m3 and with features as small as 5nm. Uniaxial compression and cyclic loading tests performed on different nanolattice topologies revealed a range of novel mechanical properties: the constituent nanoceramics used here have size-enhanced strengths that approach the theoretical limit of materials strength; hollow aluminum oxide (Al2O3) nanolattices exhibited ductile-like deformation and recovered nearly completely after compression to 50% strain when their wall thicknesses were reduced below 20nm due to the activation of shell buckling; hierarchical nanolattices exhibited enhanced recoverability and a near linear scaling of strength and stiffness with relative density, with E∝ρ1.04 and σy∝ρ1.17 for hollow Al2O3 samples; periodic rigid and non-rigid nanolattice topologies were tested and showed a nearly uniform scaling of strength and stiffness with relative density, marking a significant deviation from traditional theories on “bending” and “stretching” dominated cellular solids; and the mechanical behavior across all topologies was highly tunable and was observed to strongly correlate with the slenderness λ and the wall thickness-to-radius ratio t/a of the beams. These results demonstrate the potential of nanoarchitected materials to create new highly tunable mechanical metamaterials with previously unattainable properties.
Resumo:
Fluorescence spectroscopy andmicroscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in thesemembranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3–4 Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using themasmembrane reporters.
Resumo:
Fluorescence spectroscopy andmicroscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in thesemembranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3–4 Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using themasmembrane reporters.
Resumo:
Migraine equivalents are a group of periodic and paroxysmal neurologic diseases. Because headache is not a prominent symptom, the diagnosis might be challenging. The objective of the study was to evaluate the frequency and outcome of migraine equivalents. This was a retrospective study. We included benign paroxysmal torticollis of infancy, benign paroxysmal vertigo of infancy, abdominal migraine, cyclic vomiting, aura without migraine, and confusional migraine. We evaluated the frequency of events, treatment, and outcome. Out of 674 children with headache, 38 (5.6%) presented with migraine equivalents. Twenty-one were boys and the mean age was 6.1 years. Fifteen had abdominal migraine, 12 benign paroxysmal vertigo, 5 confusional migraine, 3 aura without migraine, 2 paroxysmal torticollis, and 1 cyclic vomiting. Prophylactic treatment was introduced in 23 patients; 4 lost follow-up and 19 had significant improvement. We conclude that the correct diagnosis of migraine equivalents enables an effective treatment with an excellent outcome.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física