983 resultados para Peri-implant infection
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Bacterial infection remains a significant problem following total joint replacement. Efforts to prevent recurrent implant infection, including the use of antibiotic-loaded bone cement for implant fixation at the time of revision surgery, are not always successful. In this in vitro study, we investigated whether the addition of chitosan to gentamicin-loaded Palacos® R bone cement increased antibiotic release and prevented bacterial adherence and biofilm formation by Staphylococcus spp. clinical isolates. Furthermore, mechanical tests were performed as a function of time post-polymerisation in pseudo-physiological conditions. The addition of chitosan to gentamicin-loaded Palacos® R bone cement significantly decreased gentamicin release and did not increase the efficacy of the bone cement at preventing bacterial colonisation and biofilm formation. Moreover, the mechanical performance of cement containing chitosan was significantly reduced after 28 days of saline degradation with the compressive and bending strengths not in compliance with the minimum requirements as stipulated by the ISO standard for PMMA bone cement. Therefore, incorporating chitosan into gentamicin-loaded Palacos® R bone cement for use in revision surgery has no clinical antimicrobial benefit and the detrimental effect on mechanical properties could adversely affect the longevity of the prosthetic joint.
Resumo:
Le desserrage des tiges est une complication fréquente des plâtres avec tiges transcorticales (TP) chez les grands animaux, nécessitant souvent leur retrait prématuré avant la guérison des fractures. Les charges excessives centrées sur le cortex à l’interface os-tige proximo-externe et disto-interne causent de l'ostéolyse. En utilisant un modèle de veau nouveau-né, ce projet a évalué un nouveau système de tige-manchon et anneau integré dans un plâtre (PS) optimisé pour réduire la contrainte péri-implant et le stress à l'interface os-implant. On a émis l'hypothèse que les PS se traduiraient par une ostéolyse péri-implant moindre par rapport aux TP. Dix veaux en bonne santé, de 3 semaines d'âge, ont été implantés avec les TP ou PS dans le métacarpe droit, à raison de 2 implants par veau. Les veaux ont été observés quotidiennement pour le confort et la boiterie et ont été euthanasiés à 28 jours. Les données recueillies comprenaient les radiographies à la chirurgie et à l'euthanasie et les mesures histomorphométriques de contact os-implant sur des échantillons non-décalcifiés avec les implants in situ. Les données ont été analysées en utilisant le test de Cochran-Mantel-Haenszel, une valeur de P <0,05 a été considérée comme significative. L'épaisseur corticale était plus importante pour les implants distaux que proximaux pour les deux groupes lors de la chirurgie (P = 0,03), mais était similaire entre les groupes (P > 0,3). Les veaux avec TP ont développé une boiterie plus tôt (au jour 21) que les veaux avec PS (P = 0,04). Histologiquement, il y avait plus de contact direct os-implant cortical pour les implants PS distaux que les implants TP (P = 0,04). La jonction métaphyso-diaphysaire osseuse où les implants proximaux étaient situés est impropre aux deux systèmes; chacun a un minimum de contact os-implant et de l'ostéolyse extensive. Le système PS n'ayant pas causé une ostéolyse importante lorsque implantés dans l'os diaphysaire et peut-être une alternative convenable aux TP pour des fractures comminutives des membres distaux.
Resumo:
The microstructure of the crestal alveolar bone is important for both the maintenance of osseointegration and the location of the gingival soft tissues. The aim of this study was to evaluate and compare the bone microstructure of the alveolar bone and of the interimplant bone in implants inserted at different interimplant distances. The mandibular bilateral premolars of six dogs were extracted, and after 12 weeks, each dog received eight implants, for a total of 48 implants. Two pairs of implants, one for each hemiarch, were separated by 2 mm (group 1) and by 3 mm (group 2). After 12 weeks, the implants received temporary acrylic prostheses. After four more weeks, metallic crowns substituted the temporary prostheses. After an additional 8 weeks the animals were sacrificed and the hemimandibles were removed, dissected, and processed. The longitudinal collagen fiber orientation was 43.2% for the alveolar bone; it was 30.3% for the 2-mm group and 43.9% for the 3-mm group. There was a statistically significant difference between the 2-mm and 3-mm groups (p < .05). The orientation of transverse collagen fibers was 47.8% for the alveolar bone; it was 37.3% for the 2-mm group and 56.3% for the 3-mm group. There was a statistically significant difference between the 2-mm and 3-mm groups (p < .05). The marrow spaces were 34.87% for the alveolar bone, 52.3% for the 2-mm group, and 59.9% for the 3-mm group. There was a statistically significant difference between the alveolar bone and the 3-mm group (p < .05). The low mineral density index was 36.29 for the alveolar bone, 46.76 for the 2-mm group, and 17.91 for the 3-mm group. There was a statistically significant difference between the 2-mm and 3-mm groups (p < .05). The high mineral density was 87.57 for the alveolar bone, 72.58 for the 2-mm group, and 84.91 for the 3-mm group. There was a statistically significant difference between the alveolar bone and the 2-mm group (p < .05). The collagen fiber orientation resulted in statistically significant differences in both the 2-mm and 3-mm groups compared with the alveolar bone. The marrow spaces appeared significantly increased in the 3-mm group compared with the alveolar bone. The low mineral density index was significantly higher in the 2-mm group, while the high mineral density index was significantly higher in the alveolar bone. In conclusion, the interimplant distance should not be less than 3 mm.
Resumo:
Background Capsular contracture is the main complication related to breast silicone implants, and its prevention remains a medical challenge. The authors present experimental research examining the effect of external ultrasound on the formation and contracture of peri-implant capsules.Methods In this study, 42 male Wistar rats had a 2-mm smooth surface implant placed in a dorsal submuscular pocket. They then were separated into ultrasound'' and control'' groups that received repeated external applications either with or without the ultrasound power on. Ultrasound applications were given three times a week for a period of 90 days. After that, both groups were housed under the same conditions with no application scheduled. Five animals of each group, killed at 30, 60, 90, and 180 days, had their implants removed along with the capsule, which received a special histologic preparation via annular sectioning that provided wide circumferential observation of the capsular tissue. Sections were stained with hematoxylin/eosin stain, Masson's trichrome stain, and Pricrosirius Red stain for regular microscopic evaluation under normal and polarized light.Results Histologic data showed that capsules from the ultrasound and control groups had statistically significant differences. Ultrasound application developed a capsular architecture similar to that shown within textured silicone implants, and its effect had an early definition with subsequent stabilization.Conclusion The authors conclude that early and repeated external ultrasound application enhances the thickness, cellular count, and vascularity of smooth silicone capsular tissue, whereas it diminishes the pattern of parallel orientation of collagen fibers.
Resumo:
Purpose: The vertical location of the implant-abutment connection influences the subsequent reaction of the peri-implant bone. It is not known, however, whether any additional influence is exerted by different microgap configurations. Therefore, the radiographic bone reactions of two different implant systems were monitored for 6 months. Materials and Methods: In eight mongrel dogs, two implants with an internal Morse-taper connection (INT group) were placed on one side of the mandible; the contralateral side received two implants with an external-hex connection (EXT group). on each side, one implant was aligned at the bone level (equicrestal) and the second implant was placed 1.5 mm subcrestal. Healing abutments were placed 3 months after submerged healing, and the implants were maintained for another 3 months without prosthetic loading. At implant placement and after 1, 2, 3, 4, 5, and 6 months, standardized radiographs were obtained, and peri-implant bone levels were measured with regard to microgap location and evaluated statistically. Results: All implants osseointegrated clinically and radiographically. The overall mean bone loss was 0.68 +/- 0.59 mm in the equicrestal INT group, 1.32 +/- 0.49 mm in the equicrestal EXT group, 0.76 +/- 0.49 mm in the subcrestal INT group, and 1.88 +/- 0.81 mm in the subcrestal EXT group. The differences between the INT and EXT groups were statistically significant (paired t tests). The first significant differences between the internal and external groups were seen at month 1 in the subcrestal groups and at 3 months in the equicrestal groups. Bone loss was most pronounced in the subcrestal EXT group. Conclusions: Within the limits of this study, different microgap configurations can cause different amounts of bone loss, even before prosthetic loading. Subcrestal placement of a butt-joint microgap design may lead to more pronounced radiographic bone loss. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:941-946
Resumo:
This study aimed to compare the influence of single-standing or connected implants on stress distribution in bone of mandibular overdentures by means of two-dimensional finite element analysis. Two finite element models were designed using software (ANSYS) for 2 situations: bar-clip (BC) group-model of an edentulous mandible supporting an overdenture over 2 connected implants with BC system, and o'ring (OR) group-model of an edentulous mandible supporting an overdenture over 2 single-standing implants with OR abutments. Axial loads (100 N) were applied on either central (L1) or lateral (L2) regions of the models. Stress distribution was concentrated mostly in the cortical bone surrounding the implants. When comparing the groups, BC (L1, 52.0 MPa and L2, 74.2 MPa) showed lower first principal stress values on supporting tissue than OR (L1, 78.4 MPa and L2, 76.7 MPa). Connected implants with BC attachment were more favorable on stress distribution over peri-implant-supporting tissue for both loading conditions.
Resumo:
Purpose: The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Materials and Methods: Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Results: Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Conclusion: Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:482-491
Resumo:
Background: the failure of osseointegration in oral rehabilitation has gained importance in current literature and in clinical practice. The integration of titanium dental implants in alveolar bone has been partly ascribed to the biocompatibility of the implant surface oxide layer. The aim of this investigation was to analyze the surface topography and composition of failed titanium dental implants in order to determine possible causes of failure.Methods: Twenty-one commercially pure titanium (cpTi) implants were retrieved from 16 patients (mean age of 50.33 +/- 11.81 years). Fourteen implants were retrieved before loading (early failures), six after loading (late failures), and one because of mandibular canal damage. The failure criterion was lack of osseointegration characterized as dental implant mobility. Two unused implants were used as a control group. All implant surfaces were examined by scanning electron microscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) to element analysis. Evaluations were performed on several locations of the same implant.Results: SEM showed that the surface of all retrieved implants consisted of different degrees of organic residues, appearing mainly as dark stains. The surface topography presented as grooves and ridges along the machined surface similar to control group. Overall, foreign elements such as carbon, oxygen, sodium, calcium, silicon, and aluminum were detected in failed implants. The implants from control group presented no macroscopic contamination and clear signs of titanium.Conclusion: These preliminary results do not suggest any material-related cause for implant failures, although different element composition was assessed between failed implants and control implants.
Resumo:
Background: The aim of the present study was to evaluate clinical and radiographic changes that occur around dental implants inserted in different levels in relation to crestal bone under different restoration protocols.Methods: Thirty-six implants were inserted in the edentulous mandible of six mongrel dogs. Each implant was assigned to an experimental group according to the distance from the top of the implant to the crestal bone: Bone Level (at crestal bone level), Minus 1 (1 mm below crestal bone), or Minus 2 (2 mm below crestal bone). Each hemimandible was submitted to a restoration protocol: conventional (prosthesis was installed 120 days after implant placement, including 30 days with healing cap) or immediate (prosthesis was installed 24 hours after implant placement). Fixed partial prostheses were installed bilaterally in the same day. After 90 days, clinical and radiographic parameters were evaluated.Results: As long as the implants were inserted in more apical positions, the first bone-to-implant contact (fBIC) was positioned more apically (P<0.05). However, the apical positioning of the implants did not influence the ridge loss or the position of the soft tissue margin (PSTM) (P>0.05). In addition, in immediately restored sites, the PSTM was located significantly more coronally than that in conventionally restored sites (P=0.02).Conclusions: Despite the more apical positioning of the fBIC, the height of the peri-implant soft tissues and ridge was not jeopardized. Moreover, the immediate restoration protocol was beneficial to the maintenance of the PSTM. Further studies are suggested to evaluate the significance of these results in longer healing periods.
Resumo:
Objectives: The aim of the present study was to evaluate histometric changes around dental implants inserted at different levels in relation to the crestal bone, under different loading conditions.Material and methods: Thirty-six implants were inserted in the edentulous mandible of six mongrel dogs. Each implant was assigned to an experimental group according to the distance from the top of the implant to the crestal bone: Bone Level (at the crestal bone level), Minus 1 (1 mm below the crestal bone) or Minus 2 group (2 mm below the crestal bone). Each hemimandible was submitted to a loading protocol: conventional or immediate restoration. After 90 days, the animals were killed. Specimens were processed, and measurements were performed concerning the length of soft and hard peri-implant tissues. Data were analyzed using ANOVA and Student's t test (alpha=5%).Results: Among conventionally restored sites, the distance from the most coronal position of soft tissue margin (PSTM) and first bone-implant contact (fBIC) was greater for Minus 2 than for Bone Level and Minus 1 sites (P=0.03), but significant differences were not observed among immediately restored sites. Differences among groups were not observed concerning the PSTM, and the distance from the implant-abutment junction to fBIC. Greater amounts of lateral bone loss were observed for conventionally than for immediately restored sites (P=0.006).Conclusions: These findings suggest that the apical positioning of the top of the implant may not jeopardize the position of soft peri-implant tissues, and that immediate restoration can be beneficial to minimize lateral bone loss. Further studies are suggested to evaluate the clinical significance of these results in longer healing periods.
Resumo:
Aim: To evaluate the effect of implant length (6 mm vs. 11 mm) on osseointegration (bone-toimplant contact) of implants installed into sockets immediately after tooth extraction.Material and methods: In six Labrador dogs, the pulp tissue of the mesial roots of P-3(3) was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemisectioned and the distal roots removed. Recipient sites were prepared in the distal alveolus and a 6 mm or an 11 mm long implant was installed at the test and control sites, respectively. Non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment.Results: No statistically significant differences were found between test and control sites both for hard and soft tissue parameters. The bone-to-implant contact evaluated at the apical region of the implants was similar as well. Although not statistically significant, the location of the top of the bony crest at the buccal aspect was more apical in relation to the implant shoulder at the test compared with the control sites (2.0 +/- 1.4 and 1.2 +/- 1.1 mm, respectively).Conclusions: Shorter implants (6 mm) present with equal osseointegration than do longer implants (11 mm).
Resumo:
Aim: To evaluate the effect of mismatching abutments on implants with a wider platform on the peri-implant hard tissue remodeling and the soft tissue dimensions.Material and methods: Mandibular premolars and first molars of six Labrador dogs were extracted bilaterally. After 3 months of healing, one tapered implant was installed on each side of the mandibular molar region with the implant shoulder placed at the level of the buccal alveolar bony crest. on the right side of the mandible, an abutment of reduced diameter in relation to the platform of the implant was used, creating a mismatch of 0.85 mm (test), whereas an abutment of the same diameter of the implant platform was affixed in the left side of the mandible (control). The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.Results: All implants were completely osseo-integrated. Bone levels were superior at the test than at the control sites. However, statistically significant differences were found only at the buccal and proximal aspects. The soft tissue vertical dimension was higher at the control compared with the test sites. However, statistically significant differences were demonstrated only at the buccal aspects.Conclusions: A mismatch of 0.85 mm between the implant and the abutment yielded more coronal levels of bone-to-implant contact and a reduced height of the peri-implant soft tissue (biologic width), especially at the buccal aspect, if the implant shoulder was placed flush with the level of the buccal alveolar bony crest.
Resumo:
Aim: To validate the platform switching concept at oral implants with respect to the preservation of the alveolar crestal bone levels in an animal model. Material & methods: Five minipigs received three implants each with a 0.25mm implant/ abutment mismatch and were placed flush (T(0)), 1 mm below (T(1)) and 1 mm above (T(+1)) the alveolar bony crest, and as a control, one conventionally restored implant placed at the bone level. The implants were randomly inserted flapless into the mandible. Four months after implant insertion, the animals were sacrificed, and undecalcified block sections were obtained and used for histological analyses. Results: The mean values for peri- implant bone resorption were 1.09 +/- 0.59mm (Control), 0.51 (+/- 0.27 mm, T(0)), 0.50 (+/- 0.46 mm, T(1)) and 1.30 (+/- 0.21 mm, T (+1)), respectively. Statistically significant differences (P< 0.05) were found among the test (T(0), T(-1)) and the control sites. Control implants presented an average biologic width length of 3.20mm (+/- 0.33), with a connective tissue adaptation compartment of 1.29mm (+/- 0.53) and an epithelial attachment of 1.91 mm (+/- 0.71). T(0), T(1) and T(+1) implants presented with a mean biologic width of 1.97mm (+/- 1.20), 2.70 mm (+/- 1.36) and 2.84mm (+/- 0.90), respectively, with a connective tissue adaptation compartment of 1.21mm (+/- 0.97), 1.21 mm (+/- 0.65) and 1.50 mm (+/- 0.70) and an epithelial attachment of 0.84 mm (+/- 0.93), 1.66 mm (+/- 0.88) and 1.35 mm (+/- 0.44), respectively. Differences between the configurations were mainly associated with the length of the epithelial attachment. The epithelial attachment was significantly longer in the C sites than in T(0) (P = 0.014). However, no other differences between configurations were detected. Conclusion: If the implants are positioned at the level of the alveolar bony crest, the platform switching concept may have a minor impact on the length of the epithelial attachment (0.84 vs. 1.91 mm), while the connective tissue adaptation compartment remains relatively unaffected. Moreover, platform switching resulted in less resorption of the alveolar crest (0.58 mm).
Resumo:
Purpose: To evaluate the stress distribution in peri-implant bone by simulating the effect of an implant with microthreads and platform switching on angled abutments through tridimensional finite element analysis. The postulated hypothesis was that the presence of microthreads and platform switching would reduce the stress concentration in the cortical bone. Methods: Four mathematical models of a central incisor supported by an implant (5.0mm×13mm) were created in which the type of thread surface in the neck portion (microthreaded or smooth) and the diameter of the angled abutment connection (5.0 and 4.1mm) were varied. These models included the RM (regular platform and microthreads), the RS (regular platform and smooth neck surface), the SM (platform switching and microthreads), and the SS (platform switching and smooth neck). The analysis was performed using ANSYS Workbench 10.0 (Swanson Analysis System). An oblique load (100N) was applied to the palatine surface of the central incisor. The bone/implant interface was considered to be perfectly integrated. Values for the maximum (σmax) and minimum (σmin) principal stress, the equivalent von Mises stress (σvM), and the maximum principal elastic strain (e{open}max) for cortical and trabecular bone were obtained. Results: For the cortical bone, the highest σmax (MPa) were observed for the RM (55.1), the RS (51.0), the SM (49.5), and the SS (44.8) models. The highest σvM (MPa) were found for the RM (45.4), the SM (42.1), the RS (38.7), and the SS models (37). The highest values for σmin were found for the RM, SM, RS and SS models. For the trabecular bone, the highest σmax values (MPa) were observed in the RS model (6.55), followed by the RM (6.37), SS (5.6), and SM (5.2) models. Conclusion: The hypothesis that the presence of microthreads and a switching platform would reduce the stress concentration in the cortical bone was partially rejected, mainly because the microthreads increased the stress concentration in cortical bone. Only platform switching reduced the stress in cortical bone. © 2012 Japan Prosthodontic Society.