931 resultados para Performance prediction
Resumo:
In view of the importance of anticipating the occurrence of critical situations in medicine, we propose the use of a fuzzy expert system to predict the need for advanced neonatal resuscitation efforts in the delivery room. This system relates the maternal medical, obstetric and neonatal characteristics to the clinical conditions of the newborn, providing a risk measurement of need of advanced neonatal resuscitation measures. It is structured as a fuzzy composition developed on the basis of the subjective perception of danger of nine neonatologists facing 61 antenatal and intrapartum clinical situations which provide a degree of association with the risk of occurrence of perinatal asphyxia. The resulting relational matrix describes the association between clinical factors and risk of perinatal asphyxia. Analyzing the inputs of the presence or absence of all 61 clinical factors, the system returns the rate of risk of perinatal asphyxia as output. A prospectively collected series of 304 cases of perinatal care was analyzed to ascertain system performance. The fuzzy expert system presented a sensitivity of 76.5% and specificity of 94.8% in the identification of the need for advanced neonatal resuscitation measures, considering a cut-off value of 5 on a scale ranging from 0 to 10. The area under the receiver operating characteristic curve was 0.93. The identification of risk situations plays an important role in the planning of health care. These preliminary results encourage us to develop further studies and to refine this model, which is intended to implement an auxiliary system able to help health care staff to make decisions in perinatal care.
Resumo:
Very preterm birth is a risk for brain injury and abnormal neurodevelopment. While the incidence of cerebral palsy has decreased due to advances in perinatal and neonatal care, the rate of less severe neuromotor problems continues to be high in very prematurely born children. Neonatal brain imaging can aid in identifying children for closer follow-up and in providing parents information on developmental risks. This thesis aimed to study the predictive value of structural brain magnetic resonance imaging (MRI) at term age, serial neonatal cranial ultrasound (cUS), and structured neurological examinations during the longitudinal follow-up for the neurodevelopment of very preterm born children up to 11 years of age as a part of the PIPARI Study (The Development and Functioning of Very Low Birth Weight Infants from Infancy to School Age). A further aim was to describe the associations between regional brain volumes and long-term neuromotor profile. The prospective follow-up comprised of the assessment of neurosensory development at 2 years of corrected age, cognitive development at 5 years of chronological age, and neuromotor development at 11 years of age. Neonatal brain imaging and structured neurological examinations predicted neurodevelopment at all age-points. The combination of neurological examination and brain MRI or cUS improved the predictive value of neonatal brain imaging alone. Decreased brain volumes associated with neuromotor performance. At the age of 11 years, the majority of the very preterm born children had age-appropriate neuromotor development and after-school sporting activities. Long-term clinical follow-up is recommended at least for all very preterm infants with major brain pathologies.
Resumo:
Fluid inteliigence has been defined as an innate ability to reason which is measured commonly by the Raven's Progressive Matrices (RPM). Individual differences in fluid intelligence are currently explained by the Cascade model (Fry & Hale, 1996) and the Controlled Attention hypothesis (Engle, Kane, & Tuholski, 1999; Kane & Engle, 2002). The first theory is based on a complex relation among age, speed, and working memory which is described as a Cascade. The alternative to this theory, the Controlled Attention hypothesis, is based on the proposition that it is the executive attention component of working memory that explains performance on fluid intelligence tests. The first goal of this study was to examine whether the Cascade model is consistent within the visuo-spatial and verbal-numerical modalities. The second goal was to examine whether the executive attention component ofworking memory accounts for the relation between working memory and fluid intelligence. Two hundred and six undergraduate students between the ages of 18 and 28 completed a battery of cognitive tests selected to measure processing speed, working memory, and controlled attention which were selected from two cognitive modalities, verbalnumerical and visuo-spatial. These were used to predict performance on two standard measures of fluid intelligence: the Raven's Progressive Matrices (RPM) and the Shipley Institute of Living Scales (SILS) subtests. Multiple regression and Structural Equation Modeling (SEM) were used to test the Cascade model and to determine the independent and joint effects of controlled attention and working memory on general fluid intelligence. Among the processing speed measures only spatial scan was related to the RPM. No other significant relations were observed between processing speed and fluid intelligence. As 1 a construct, working memory was related to the fluid intelligence tests. Consistent with the predictions for the RPM there was support for the Cascade model within the visuo-spatial modality but not within the verbal-numerical modality. There was no support for the Cascade model with respect to the SILS tests. SEM revealed that there was a direct path between controlled attention and RPM and between working memory and RPM. However, a significant path between set switching and RPM explained the relation between controlled attention and RPM. The prediction that controlled attention mediated the relation between working memory and RPM was therefore not supported. The findings support the view that the Cascade model may not adequately explain individual differences in fluid intelligence and this may be due to the differential relations observed between working memory and fluid intelligence across different modalities. The findings also show that working memory is not a domain-general construct and as a result its relation with fluid intelligence may be dependent on the nature of the working memory modality.
Resumo:
In studies of cognitive processing, the allocation of attention has been consistently linked to subtle, phasic adjustments in autonomic control. Both autonomic control of heart rate and control of the allocation of attention are known to decline with age. It is not known, however, whether characteristic individual differences in autonomic control and the ability to control attention are closely linked. To test this, a measure of parasympathetic function, vagal tone (VT) was computed from cardiac recordings from older and younger adults taken before and during performance of two attentiondemanding tasks - the Eriksen visual flanker task and the source memory task. Both tasks elicited event-related potentials (ERPs) that accompany errors, i.e., error-related negativities (ERNs) and error positivities (Pe's). The ERN is a negative deflection in the ERP signal, time-locked to responses made on incorrect trials, likely generated in the anterior cingulate. It is followed immediately by the Pe, a broad, positive deflection which may reflect conscious awareness of having committed an error. Age-attenuation ofERN amplitude has previously been found in paradigms with simple stimulus-response mappings, such as the flanker task, but has rarely been examined in more complex, conceptual tasks. Until now, there have been no reports of its being investigated in a source monitoring task. Age-attenuation of the ERN component was observed in both tasks. Results also indicated that the ERNs generated in these two tasks were generally comparable for young adults. For older adults, however, the ERN from the source monitoring task was not only shallower, but incorporated more frontal processing, apparently reflecting task demands. The error positivities elicited by 3 the two tasks were not comparable, however, and age-attenuation of the Pe was seen only in the more perceptual flanker task. For younger adults, it was Pe scalp topography that seemed to reflect task demands, being maximal over central parietal areas in the flanker task, but over very frontal areas in the source monitoring task. With respect to vagal tone, in the flanker task, neither the number of errors nor ERP amplitudes were predicted by baseline or on-task vagal tone measures. However, in the more difficult source memory task, lower VT was marginally associated with greater numbers of source memory errors in the older group. Thus, for older adults, relatively low levels of parasympathetic control over cardiac response coincided with poorer source memory discrimination. In both groups, lower levels of baseline VT were associated with larger amplitude ERNs, and smaller amplitude Pe's. Thus, low VT was associated in a conceptual task with a greater "emergency response" to errors, and at the same time, reduced awareness of having made them. The efficiency of an individual's complex cognitive processing was therefore associated with the flexibility of parasympathetic control of heart rate, in response to a cognitively challenging task.
Resumo:
This thesis describes an ancillary project to the Early Diagnosis of Mesothelioma and Lung Cancer in Prior Asbestos Workers study and was conducted to determine the effects of asbestos exposure, pulmonary function and cigarette smoking in the prediction of pulmonary fibrosis. 613 workers who were occupationally exposed to asbestos for an average of 25.9 (SD=14.69) years were sampled from Sarnia, Ontario. A structured questionnaire was administered during a face-to-face interview along with a low-dose computed tomography (LDCT) of the thorax. Of them, 65 workers (10.7%, 95%CI 8.12—12.24) had LDCT-detected pulmonary fibrosis. The model predicting fibrosis included the variables age, smoking (dichotomized), post FVC % splines and post- FEV1% splines. This model had a receiver operator characteristic area under the curve of 0.738. The calibration of the model was evaluated with R statistical program and the bootstrap optimism-corrected calibration slope was 0.692. Thus, our model demonstrated moderate predictive performance.
Resumo:
The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and the business cycle on the accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to firms, investors and the economy. To test the impact of the choice of cut-off points and sampling procedures, three bankruptcy prediction models are assessed- Bayesian, Hazard and Mixed Logit. A salient feature of the study is that the analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from Lynn M. LoPucki Bankruptcy Research Database in the U. S. was used to evaluate the relative performance of the three models. The choice of a cut-off point and sampling procedures were found to affect the rankings of the various models. In general, the results indicate that the empirical cut-off point estimated from the training sample resulted in the lowest misclassification costs for all three models. Although the Hazard and Mixed Logit models resulted in lower costs of misclassification in the randomly selected samples, the Mixed Logit model did not perform as well across varying business-cycles. In general, the Hazard model has the highest predictive power. However, the higher predictive power of the Bayesian model, when the ratio of the cost of Type I errors to the cost of Type II errors is high, is relatively consistent across all sampling methods. Such an advantage of the Bayesian model may make it more attractive in the current economic environment. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays a range of user groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors' concerns with respect to assessing failure risk.
Resumo:
Cette thèse de doctorat a été réalisée grâce à l'appui financier des fonds québécois de la recherche sur la société et la culture.
Resumo:
La fibrillation auriculaire (FA) est une arythmie touchant les oreillettes. En FA, la contraction auriculaire est rapide et irrégulière. Le remplissage des ventricules devient incomplet, ce qui réduit le débit cardiaque. La FA peut entraîner des palpitations, des évanouissements, des douleurs thoraciques ou l’insuffisance cardiaque. Elle augmente aussi le risque d'accident vasculaire. Le pontage coronarien est une intervention chirurgicale réalisée pour restaurer le flux sanguin dans les cas de maladie coronarienne sévère. 10% à 65% des patients qui n'ont jamais subi de FA, en sont victime le plus souvent lors du deuxième ou troisième jour postopératoire. La FA est particulièrement fréquente après une chirurgie de la valve mitrale, survenant alors dans environ 64% des patients. L'apparition de la FA postopératoire est associée à une augmentation de la morbidité, de la durée et des coûts d'hospitalisation. Les mécanismes responsables de la FA postopératoire ne sont pas bien compris. L'identification des patients à haut risque de FA après un pontage coronarien serait utile pour sa prévention. Le présent projet est basé sur l'analyse d’électrogrammes cardiaques enregistrées chez les patients après pontage un aorte-coronaire. Le premier objectif de la recherche est d'étudier si les enregistrements affichent des changements typiques avant l'apparition de la FA. Le deuxième objectif est d'identifier des facteurs prédictifs permettant d’identifier les patients qui vont développer une FA. Les enregistrements ont été réalisés par l'équipe du Dr Pierre Pagé sur 137 patients traités par pontage coronarien. Trois électrodes unipolaires ont été suturées sur l'épicarde des oreillettes pour enregistrer en continu pendant les 4 premiers jours postopératoires. La première tâche était de développer un algorithme pour détecter et distinguer les activations auriculaires et ventriculaires sur chaque canal, et pour combiner les activations des trois canaux appartenant à un même événement cardiaque. L'algorithme a été développé et optimisé sur un premier ensemble de marqueurs, et sa performance évaluée sur un second ensemble. Un logiciel de validation a été développé pour préparer ces deux ensembles et pour corriger les détections sur tous les enregistrements qui ont été utilisés plus tard dans les analyses. Il a été complété par des outils pour former, étiqueter et valider les battements sinusaux normaux, les activations auriculaires et ventriculaires prématurées (PAA, PVA), ainsi que les épisodes d'arythmie. Les données cliniques préopératoires ont ensuite été analysées pour établir le risque préopératoire de FA. L’âge, le niveau de créatinine sérique et un diagnostic d'infarctus du myocarde se sont révélés être les plus importants facteurs de prédiction. Bien que le niveau du risque préopératoire puisse dans une certaine mesure prédire qui développera la FA, il n'était pas corrélé avec le temps de l'apparition de la FA postopératoire. Pour l'ensemble des patients ayant eu au moins un épisode de FA d’une durée de 10 minutes ou plus, les deux heures précédant la première FA prolongée ont été analysées. Cette première FA prolongée était toujours déclenchée par un PAA dont l’origine était le plus souvent sur l'oreillette gauche. Cependant, au cours des deux heures pré-FA, la distribution des PAA et de la fraction de ceux-ci provenant de l'oreillette gauche était large et inhomogène parmi les patients. Le nombre de PAA, la durée des arythmies transitoires, le rythme cardiaque sinusal, la portion basse fréquence de la variabilité du rythme cardiaque (LF portion) montraient des changements significatifs dans la dernière heure avant le début de la FA. La dernière étape consistait à comparer les patients avec et sans FA prolongée pour trouver des facteurs permettant de discriminer les deux groupes. Cinq types de modèles de régression logistique ont été comparés. Ils avaient une sensibilité, une spécificité et une courbe opérateur-receveur similaires, et tous avaient un niveau de prédiction des patients sans FA très faible. Une méthode de moyenne glissante a été proposée pour améliorer la discrimination, surtout pour les patients sans FA. Deux modèles ont été retenus, sélectionnés sur les critères de robustesse, de précision, et d’applicabilité. Autour 70% patients sans FA et 75% de patients avec FA ont été correctement identifiés dans la dernière heure avant la FA. Le taux de PAA, la fraction des PAA initiés dans l'oreillette gauche, le pNN50, le temps de conduction auriculo-ventriculaire, et la corrélation entre ce dernier et le rythme cardiaque étaient les variables de prédiction communes à ces deux modèles.
Resumo:
Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that qualitative information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (bulking episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelation between variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics
Resumo:
The prediction of extratropical cyclones by the European Centre for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) Ensemble Prediction Systems (EPS) is investigated using a storm-tracking forecast verifica-tion methodology. The cyclones are identified and tracked along the forecast trajectories so that statistics can be generated to determine the rate at which the position and intensity of the forecasted cyclones diverge from the corresponding analysed cyclones with forecast time. Overall the ECMWF EPS has a slightly higher level of performance than the NCEP EPS. However, in the southern hemisphere the NCEP EPS has a slightly higher level of skill for the intensity of the storms. The results from both EPS indicate a higher level of predictive skill for the position of extratropical cyclones than their intensity and show that there is a larger spread in intensity than position. The results also illustrate several benefits an EPS can offer over a deterministic forecast.
Resumo:
We describe a new methodology for comparing satellite radiation budget data with a numerical weather prediction (NWP) model. This is applied to data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The methodology brings together, in near-real time, GERB broadband shortwave and longwave fluxes with simulations based on analyses produced by the Met Office global NWP model. Results for the period May 2003 to February 2005 illustrate the progressive improvements in the data products as various initial problems were resolved. In most areas the comparisons reveal systematic errors in the model's representation of surface properties and clouds, which are discussed elsewhere. However, for clear-sky regions over the oceans the model simulations are believed to be sufficiently accurate to allow the quality of the GERB fluxes themselves to be assessed and any changes in time of the performance of the instrument to be identified. Using model and radiosonde profiles of temperature and humidity as input to a single-column version of the model's radiation code, we conduct sensitivity experiments which provide estimates of the expected model errors over the ocean of about ±5–10 W m−2 in clear-sky outgoing longwave radiation (OLR) and ±0.01 in clear-sky albedo. For the more recent data the differences between the observed and modeled OLR and albedo are well within these error estimates. The close agreement between the observed and modeled values, particularly for the most recent period, illustrates the value of the methodology. It also contributes to the validation of the GERB products and increases confidence in the quality of the data, prior to their release.