999 resultados para Pb Zircon Data
Resumo:
O histórico de prospecção de hidrocarbonetos da Bacia Paleozoica do Parnaíba, situada no norte-nordeste do Brasil, sempre foi considerado desfavorável quando comparado aos super-reservatórios estimados do Pré-Sal das bacias da Margem Atlântica e até mesmo interiores, como a Bacia do Solimões. No entanto, a descoberta de gás natural em depósitos da superseqüência mesodevoniana-eocarbonífera do Grupo Canindé, que incluem as formações Pimenteiras, Cabeças e Longá, impulsionou novas pesquisas no intuito de refinar a caracterização paleoambiental, paleogeográfica, bem como, entender o sistema petrolífero, os possíveis plays e a potencialidade do reservatório Cabeças. A avaliação faciológica e estratigráfica com ênfase no registro da tectônica glacial, em combinação com a geocronologia de zircão detrítico permitiu interpretar o paleoambiente e a proveniência do reservatório Cabeças. Seis associações de fácies agrupadas em sucessões aflorantes, com espessura máxima de até 60m registram a evolução de um sistema deltaico Devoniano influenciado por processos glaciais principalmente no topo da unidade. 1) frente deltaica distal, composta por argilito maciço, conglomerado maciço, arenito com acamamento maciço, laminação plana e estratificação cruzada sigmoidal 2) frente deltaica proximal, representada pelas fácies arenito maciço, arenito com laminação plana, arenito com estratificação cruzada sigmoidal e conglomerado maciço; 3) planície deltaica, representada pelas fácies argilito laminado, arenito maciço, arenito com estratificação cruzada acanalada e conglomerado maciço; 4) shoreface glacial, composta pelas fácies arenito com marcas onduladas e arenito com estratificação cruzada hummocky; 5) depósitos subglaciais, que englobam as fácies diamictito maciço, diamictito com pods de arenito e brecha intraformacional; e 6) frente deltaica de degelo, constituída pelas fácies arenito maciço, arenito deformado, arenito com laminação plana, arenito com laminação cruzada cavalgante e arenito com estratificação cruzada sigmoidal. Durante o Fammeniano (374-359 Ma) uma frente deltaica dominada por processos fluviais progradava para NW (borda leste) e para NE (borda oeste) sobre uma plataforma influenciada por ondas de tempestade (Formação Pimenteiras). Na borda leste da bacia, o padrão de paleocorrente e o espectro de idades U-Pb em zircão detrítico indicam que o delta Cabeças foi alimentado por áreas fonte situadas a sudeste da Bacia do Parnaíba, provavelmente da Província Borborema. Grãos de zircão com idade mesoproterozóica (~ 1.039 – 1.009 Ma) e neoproterozóica (~ 654 Ma) são os mais populosos ao contrário dos grãos com idade arqueana (~ 2.508 – 2.678 Ma) e paleoproterozóica (~ 2.054 – 1.992 Ma). O grão de zircão concordante mais novo forneceu idade 206Pb/238U de 501,20 ± 6,35 Ma (95% concordante) indicando idades de áreas-fonte cambrianas. As principais fontes de sedimentos do delta Cabeças na borda leste são produto de rochas do Domínio Zona Transversal e de plútons Brasilianos encontrados no embasamento a sudeste da Bacia do Parnaíba, com pequena contribuição de sedimentos oriundos de rochas do Domínio Ceará Central e da porção ocidental do Domínio Rio Grande do Norte. No Famenniano, a movimentação do supercontinente Gondwana para o polo sul culminou na implantação de condições glaciais concomitantemente com o rebaixamento do nível do mar e exposição da região costeira. O avanço das geleiras sobre o embasamento e depósitos deltaicos gerou erosão, deposição de diamictons com clastos exóticos e facetados, além de estruturas glaciotectônicas tais como plano de descolamento, foliação, boudins, dobras, duplex, falhas e fraturas que refletem um cisalhamento tangencial em regime rúptil-dúctil. O substrato apresentava-se inconsolidado e saturados em água com temperatura levemente abaixo do ponto de fusão do gelo (permafrost quente). Corpos podiformes de arenito imersos em corpos lenticulares de diamicton foram formados pela ruptura de camadas pelo cisalhamento subglacial. Lentes de conglomerados esporádicas (dump structures) nos depósitos de shoreface sugere queda de detritos ligados a icebergs em fases de recuo da geleira. A elevação da temperatura no final do Famenniano reflete a rotação destral do Gondwana e migração do polo sul da porção ocidental da América do Sul e para o oeste da África. Esta nova configuração paleogeográfica posicionou a Bacia do Parnaíba em regiões subtropicais iniciando o recuo de geleiras e a influência do rebound isostático. O alívio de pressão é indicado pela geração de sills e diques clásticos, estruturas ball-and-pillow, rompimento de camadas e brechas. Falhas de cavalgamento associadas à diamictitos com foliação na borda oeste da bacia sugerem que as geleiras migravam para NNE. O contínuo aumento do nível do mar relativo propiciou a instalação de sedimentação deltaica durante o degelo e posteriormente a implantação de uma plataforma transgressiva (Formação Longá). Diamictitos interdigitados com depósitos de frente deltaica na porção superior da Formação Cabeças correspondem a intervalos com baixo volume de poros e podem representar trapas estratigráficas secundárias no reservatório. As anisotropias primárias subglaciais do topo da sucessão Cabeças, em ambas as bordas da Bacia do Parnaíba, estende a influência glacial e abre uma nova perspectiva sobre a potencialidade efetiva do reservatório Cabeças do sistema petrolífero Mesodevoniano-Eocarbonífero da referida bacia.
Resumo:
O Trondhjemito Mogno, uma das mais expressivas associações TTG do Terreno Granito-Greenstone de Rio Maria (TGGRM), tida como representativa da segunda geração de TTGs daquele terreno, apresenta, em sua principal área de ocorrência, diferenças estruturais, petrográficas, geoquímicas e geocronológicas que levaram à sua separação em duas associações distintas. A designação de Trondhjemito Mogno foi mantida para a associação dominante, com padrão estrutural NW-SE a EW, distribuída nos domínios leste e oeste da área. A nova associação identificada na porção centro-oeste da área mapeada, com foliação dominante NE-SW a N-S foi denominada de Tonalito Mariazinha. Reduziu-se, assim, à área de ocorrência do Trondhjemito Mogno e definiu-se nova unidade estratigráfica na região. Dados geocronológicos inéditos revelam que o Trondhjemito Mogno e o Tonalito Mariazinha possuem idades distintas e não fazem parte da segunda geração de TTGs do TGGRM. As duas associações estudadas são constituídas por epidoto-biotita tonalitos e trondhjemitos, os quais pertencem ao grupo de TTG com alto Al2O3 e possuem características geoquímicas compatíveis com as dos típicos granitóides arqueanos da série trondhjemítica. Comparações com TTGs da região de Xinguara mostram que o Trondhjemito Mogno possui características geoquímicas transicionais entre o Complexo Tonalítico Caracol e o Trondhjemito Água Fria, enquanto que o Tonalito Mariazinha se assemelha com o Complexo Tonalítico Caracol. Os estudos sobre o Trondhjemito Mogno e granitóides arqueanos associados demonstram que as associações TTG do TGGRM são mais diversificadas do que era admitido e contribuíram significativamente para sua melhor compreensão, reduzindo expressivamente as ocorrências da segunda geração de TTGs naquele terreno e levando à identificação de nova associação TTG.
Resumo:
Basalts of the Parana continental flood basalt (PCFB) province erupted through dominantly Proterozoic continental crust during the Cretaceous. In order to examine the mantle source(s) of this major flood basalt province, we studied Os, Sr, Nd, and Pb isotope systematics, and highly siderophile element (HSE) abundances in tholeiitic basalts that were carefully chosen to show the minimal effects of crustal contamination. These basalts define a precise Re-Os isochron with an age of 131.6 +/- 2.3 Ma and an initial Os-187/Os-188 of 0.1295 +/- 0.0018 (gamma Os-187 = +2.7 +/- 1.4). This initial Os isotopic composition is considerably more radiogenic than estimates of the contemporary Depleted Mantle (DM). The fact that the Re-Os data define a well constrained isochron with an age similar to Ar-40/Ar-39 age determinations, despite generally low Os concentrations, is consistent with closed-system behavior for the HSE. Neodymium, Sr, and Pb isotopic data suggest that the mantle source of the basalts had been variably hybridized by melts derived from enriched mantle components. To account for the combined Os, Nd, Sr, and Pb isotopic characteristics of these rocks, we propose that the primary melts formed from metasomatized asthenospheric mantle (represented by arc-mantle peridotite) that underwent mixing with two enriched components, EM-I and EM-II. The different enriched components are reflected in minor isotopic differences between basalts from southern and northern portions of the province. The Tristan da Cunha hotspot has been previously suggested to be the cause of the Parana continental flood basalt magmatism. However, present-day Tristan da Cunha lavas have much higher Os-187/Os-188 isotopic compositions than the source of the PCFB. These data, together with other isotopic and elemental data, preclude making a definitive linkage between the Tristan plume and the PCFB. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Niquelandia Complex, Brazil, is one of the world's largest mafic-ultramafic plutonic complexes. Like the Mafic Complex of the Ivrea-Verbano Zone, it is affected by a pervasive high-T foliation and shows hypersolidus deformation structures, contains significant inclusions of country-rock paragneiss, and is subdivided into a Lower and an Upper Complex. In this paper, we present new SHRIMP U-Pb zircon ages that provide compelling evidence that the Upper and the Lower Niquelandia Complexes formed during the same igneous event at ca. 790 Ma. Coexistence of syn-magmatic and high-T subsolidus deformation structures indicates that both complexes grew incrementally as large crystal mush bodies which were continuously stretched while fed by pulses of fresh magma. Syn-magmatic recrystallization during this deformation resulted in textures and structures which, although appearing metamorphic, are not ascribable to post-magmatic metamorphic event(s), but are instead characteristic of the growth process in huge and deep mafic intrusions such as both the Niquelandia and Ivrea Complexes. Melting of incorporated country-rock paragneiss continued producing hybrid rocks during the last, vanishing stages of magmatic crystallization. This resulted in the formation of minor, late-stage hybrid rocks, whose presence obscures the record of the main processes of interaction between mantle magmas and crustal components, which may be active at the peak of the igneous events and lead to the generation of eruptible hybrid magmas. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
VIII Congreso geológico de España, Oviedo, 17-19 julio 2012
Resumo:
A full set of geochemical and Sr, Nd and Pb isotope data both on bulk-rock and mineral samples is provided for volcanic rocks representative of the whole stratigraphic succession of Lipari Island in the Aeolian archipelago. These data, together with petrographic observations and melt/fluid inclusion investigations from the literature, give outlines on the petrogenesis and evolution of magmas through the magmatic and eruptive history of Lipari. This is the result of nine successive Eruptive Epochs developing between 271 ka and historical times, as derived from recentmost volcanological and stratigraphic studies, combined with available radiometric ages and correlation of tephra layers and marine terrace deposits. These Eruptive Epochs are characterized by distinctive vents partly overlapping in space and time, mostly under control of the main regional tectonic trends (NNW-SSE, N-S and minor E-W). A large variety of lava flows, scoriaceous deposits, lava domes, coulees and pyroclastics are emplaced, ranging in composition through time from calcalkaline (CA) and high-K (HKCA) basaltic andesites to rhyolites. CA and HKCA basaltic andesitic to dacitic magmas were erupted between 271 and 81 ka (Eruptive Epochs 1-6) from volcanic edifices located along the western coast of the island (and subordinately the eastern Monterosa) and the M.Chirica and M.S.Angelo stratocones. These mafic to intermediate magmas mainly evolved through AFC and RAFC processes, involving fractionation of mafic phases, assimilation of wall rocks and mixing with newly injected mafic magmas. Following a 40 ka-long period of volcanic quiescence, the rhyolitic magmas were lately erupted from eruptive vents located in the southern and north-eastern sectors of Lipari between 40 ka and historical times (Eruptive Epochs 7-9). They are suggested to derive from the previous mafic to intermediate melts through AFC processes. During the early phases of rhyolitic magmatism (Eruptive Epochs 7-8), enclaves-rich rocks and banded pumices, ranging in composition from HKCA dacites to low-SiO2 rhyolites were erupted, representing the products of magma mixing between fresh mafic magmas and the fractionated rhyolitic melts. The interaction of mantle-derived magmas with the crust represents an essential process during the whole magmatic hystory of Lipari, and is responsible for the wide range of observed geochemical and isotopic variations. The crustal contribution was particularly important during the intermediate phases of activity of Lipari when the cordierite-bearing lavas were erupted from the M. S.Angelo volcano (Eruptive Epoch 5, 105 ka). These lavas are interpreted as the result of mixing and subsequent hybridization of mantle-derived magmas, akin to the ones characterizing the older phases of activity of Lipari (Eruptive Epochs 1-4), and crustal anatectic melts derived from dehydration-melting reactions of metapelites in the lower crust. A comparison between the adjacent islands of Lipari and Vulcano outlines that their mafic to intermediate magmas seem to be genetically connected and derive from a similar mantle source affected by different degrees of partial melting (and variable extent of crustal assimilation) producing either the CA magmas of Lipari (higher degrees) or the HKCA to SHO magmas of Vulcano (lower degrees). On a regional scale, the most primitive rocks (SiO2<56%, MgO>3.5%) of Lipari, Vulcano, Salina and Filicudi are suggested to derive from a similar MORB-like source, variably metasomatized by aqueous fluids coming from the slab and subordinately by the additions of sediments.
Resumo:
The Suretta nappe of eastern Switzerland contains a series of meta-igneous rocks, with the Rofna Porphyry Complex (RPC) being the most prominent member. We present LA-ICP-MS U–Pb zircon data from 12 samples representing a broad spectrum of meta-igneous rocks within the Suretta nappe, in order to unravel the pre-Alpine magmatic history of this basement unit. Fine-grained porphyries and coarse-grained augengneisses from the RPC give crystallization ages between 284 and 271 Ma, which either represent distinct magma pulses or long-lasting magmatic activity in a complex magma chamber. There is also evidence for an earlier Variscan magmatic event at ~320–310 Ma. Mylonites at the base of the Suretta nappe are probably derived from either the RPC augengneisses or another unknown Carboniferous–Permian magmatic protolith with a crystallization age between 320 and 290 Ma. Two polymetamorphic orthogneisses from the southern Suretta nappe yield crystallization ages of ~490 Ma. Inherited zircon cores are mainly of late Neoproterozoic age, with minor Neo- to Paleoproterozoic sources. We interpret the Suretta nappe as mainly representing a Gondwana-derived crustal unit, which was subsequently intruded by minor Cambrian–Ordovician and major Carboniferous–Permian magmatic rocks. Finally, the Suretta nappe was thrust into its present position during the Alpine orogeny, which hardly affected the U–Pb system in zircon.
Resumo:
A measurement of event-plane correlations involving two or three event planes of different order is presented as a function of centrality for 7 μb −1 Pb+Pb collision data at √s NN =2.76 TeV, recorded by the ATLAS experiment at the Large Hadron Collider. Fourteen correlators are measured using a standard event-plane method and a scalar-product method, and the latter method is found to give a systematically larger correlation signal. Several different trends in the centrality dependence of these correlators are observed. These trends are not reproduced by predictions based on the Glauber model, which includes only the correlations from the collision geometry in the initial state. Calculations that include the final-state collective dynamics are able to describe qualitatively, and in some cases also quantitatively, the centrality dependence of the measured correlators. These observations suggest that both the fluctuations in the initial geometry and the nonlinear mixing between different harmonics in the final state are important for creating these correlations in momentum space.
Resumo:
Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.
Resumo:
A linear, N-S-trending belt of elliptical, positive magnetic anomalies occurs in central Nordaustlandet, northeast Svalbard. They extend from the Caledonian and older complexes in the vicinity of Duvefjorden, southwards beneath the western margin of Austfonna and the offshore areas covered by Carboniferous and younger strata, to the vicinity of Edge¯ya. One of the strongest anomalies occurs in inner Duvefjorden where it coincides with a highly magnetic quartz monzonite-granite pluton at Djupkilsodden. U-Pb and Pb-Pb zircon dating of this post-tectonic pluton defines an age of c. 415 Ma, this being based on the Pb-Pb analyses of three specimens (Pb-Pb ages of 414±10 Ma, 411±10 Ma and 408±10 Ma) and a U-Pb discordia with an upper intercept at 417+18/-7 Ma. Neighbouring felsic plutons in central Nordaustlandet, including the Rijpfjorden and Winsnesbreen granites, lack magnetic signatures in their exposed parts, but have a similar Caledonian age. The central Nordaustlandet magnetic anomalies appear to be part of a circa 300 km long linear belt of late Silurian or early Devonian post-tectonic plutonism that characterizes the Caledonian basement of eastern Svalbard. Felsic intrusions of similar age further west in Spitsbergen are likewise both highly magnetic (Hornemantoppen batholith) and largely non-magnetic (Newtontoppen batholiths / Chydeniusbreen granitoid suite). They all appear to have been intruded at the end of the main period of Caledonian terrane assembly of the northwestern Barents Shelf.
Resumo:
New Sr-Nd-Pb-Hf data require the existence of at least four mantle components in the genesis of basalts from the the North Atlantic Igneous Province (NAIP): (1) one (or more likely a small range of) enriched component(s) within the Iceland plume, (2) a depleted component within the Iceland plume (distinct from the shallow N-MORB source), (3) a depleted sheath surrounding the plume and (4) shallow N-MORB source mantle. These components have been available since the major phase of igneous activity associated with plume head impact during Paleogene times. In Hf-Nd isotope space, samples from Iceland, DSDP Leg 49 (Sites 407, 408 and 409), ODP Legs 152 and 163 (southeast Greenland margin), the Reykjanes Ridge, Kolbeinsey Ridge and DSDP Leg 38 (Site 348) define fields that are oblique to the main ocean island basalt array and extend toward a component with higher 176Hf/177Hf than the N-MORB source available prior to arrival of the plume, as indicated by the compositions of Cretaceous basalts from Goban Spur (~95 Ma). Aside from Goban Spur, only basalts from Hatton Bank on the oceanward side of the Rockall Plateau (DSDP Leg 81) lie consistently within the field of N-MORB, which indicates that the compositional influence of the plume did not reach this far south and east ~55 Ma ago. Thus, Hf-Nd isotope systematics are consistent with previous studies which indicate that shallow MORB-source mantle does not represent the depleted component within the Iceland plume (Thirlwall, J. Geol. Soc. London 152 (1995) 991-996; Hards et al., J. Geol. Soc. London 152 (1995) 1003-1009; Fitton et al., 1997 doi:10.1016/S0012-821X(97)00170-2). They also indicate that the depleted component is a long-lived and intrinsic feature of the Iceland plume, generated during an ancient melting event in which a mineral (such as garnet) with a high Lu/Hf was a residual phase. Collectively, these data suggest a model for the Iceland plume in which a heterogeneous core, derived from the lower mantle, consists of 'enriched' streaks or blobs dispersed in a more depleted matrix. A distinguishing feature of both the enriched and depleted components is high Nb/Y for a given Zr/Y (i.e. positive DeltaNb), but the enriched component has higher Sr and Pb isotope ratios, combined with lower epsilon-Nd and epsilon-Hf. This heterogeneous core is surrounded by a sheath of depleted material, similar to the depleted component of the Iceland plume in its epsilon-Nd and epsilon-Hf, but with lower 87Sr/86Sr, 208Pb/204Pb and negative DeltaNb; this material was probably entrained from near the 670 km discontinuity when the plume stalled at the boundary between the upper and lower mantle. The plume sheath displaced more normal MORB asthenosphere (distinguished by its lower epsilon-Hf for a given epsilon-Nd or Zr/Nb ratio), which existed in the North Atlantic prior to plume impact. Preliminary data on MORBs from near the Azores plume suggest that much of the North Atlantic may be 'polluted' not only by enriched plume material but also by depleted material similar to the Iceland plume sheath. If this hypothesis is correct, it may provide a general explanation for some of the compositional diversity and variations in inferred depth of melting (Klein and Langmuir, 1987 doi:10.1029/JB092iB08p08089) along the MAR in the North Atlantic.
Resumo:
We present initial isotopic ratios of lead for Early Cretaceous (Barremian-Aptian) sections from Shatsky Rise (Pacific) and Gorgo a Cerbara (Italy). Our Pb isotopic data track an interval representing Oceanic Anoxic Event (OAE)-1a, which is characterized by quasi-global deposition of organic carbon-rich black shale. Pb isotopic compositions of sediments from Shatsky Rise decrease at the end of Barremian time, from radiogenic continental values to unradiogenic values, and subsequently remained less radiogenic until the end of early Aptian time. We explain the isotopic shift by a significant increase in supply rate of unradiogenic Pb, most likely due to massive volcanism. In contrast, the Pb isotopic compositions from the Italian section, which was situated at the western end of Tethys, are mostly identical to those of upper continental crust, showing no significant change in supply rate of unradiogenic Pb. The discrepancy between two sites is attributed to quiescent deep-submarine eruptions of Pacific large igneous provinces (LIPs) such as the Ontong Java Plateau (OJP), which severely limited dispersion of Pb-carrying particles out of the Pacific Ocean. Published Os isotopic data from the Italian section indicate two episodes of massive eruptions of OJP or contemporaneous Manihiki and Hikurangi plateaus starting from earliest Aptian time, slightly later than that indicated by the sedimentary Pb isotopic record from Shatsky Rise. Differences in isotopic variations between Pb and Os likely reflect differences in their chemical behaviors in the oceans, i.e., Pb isotopic compositions would have varied in response to local or regional changes in sediment provenances, whereas large-scale changes in Os inputs are required to explain variations in seawater Os isotopic compositions. Our Pb isotopic data, together with the published Os isotopic record, provide new evidence for the eruptive history of OJP together with contemporaneous Pacific plateaus and its environmental consequences, starting from end-Barremian time and extending through early Aptian time.
Resumo:
Comprehensive geochronological and isotope-geochemical studies showed that the Late Quaternary Elbrus Volcano (Greater Caucasus) experienced long (approximately 200 ka) discrete evolution with protracted periods of igneous quiescence (approximately 50 ka) between large-scale eruptions. Volcanic activity of Elbrus is subdivided into three phases: Middle Neopleistocene (225-170 ka), Late Neopleistocene (110-70 ka), and Late Neopleistocene - Holocene (earlier than 35 ka). Petrogeochemical and isotope (Sr-Nd-Pb) signatures of Elbrus lavas point to their mantle-crustal origin. It was shown that hybrid parental magmas of the volcano formed due to mixing and/or contamination of deep-seated mantle melts by Paleozoic upper crustal material of the Greater Caucasus. Mantle reservoir that participated in genesis of Elbrus lavas as well as most other Neogene-Quaternary magmatic rocks of Caucasus was represented by the lower mantle "Caucasus" source. Primary melts generated by this source in composition corresponded to K-Na subalkali basalts with the following isotopic characteristics: 87Sr/86Sr = 0.7041+/-0.0001, e-Nd = +4.1+/-0.2, 147Sm/144Nd = 0.105-0.114, 206Pb/204Pb = 18.72, 207Pb/204Pb = 15.62, and 208Pb/204Pb = 38.78. Temporal evolution of isotope characteristics for lavas of the Elbrus Volcano is well described by a Sr-Nd mixing hyperbole between "Caucasus" source and estimated average composition of the Paleozoic upper crust of the Greater Caucasus. It was shown that, with time, proportions of mantle material in parental magmas of Elbrus gently increased: from ~60% at the Middle-Neopleistocene phase of activity to ~80% at the Late Neopleistocene - Holocene phase, which indicates an increase of activity of a deep-seated source at decreasing input of crustal melts or contamination with time. Unraveled evolution of the volcano with discrete eruption events, lacking signs of cessation of the Late Neopleistocene - Holocene phase, increasing contribution of the deep-seated mantle source in genesis of Elbrus lavas with time as deduced from isotope-geochemical data, as well as numerous geophysical and geological evidence indicate that Elbrus is a potentially active volcano and its eruptions may be resumed. Possible scenarios were proposed for evolution of the volcano, if its eruptive activity continued.