881 resultados para Pavements, Reinforced concrete.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is about the 21st century reinforced concrete analysis under the point of view of its constituent materials. First of all it is described the theoretical approach of the bending elements calculated based on the Norms BAEL 91 standarts. After that, numerical load-displacement are presented from reinforced concrete beams and plates validated by experimental data. The numerical modellings has been carried on in the program CASTEM 2000. In this program a elastoplastic model of Drucker-Prager defines the rupture surface of the concrete in non associative plasticity. The crack is smeared on the Gauss points of the finite elements with formation criterion starting from the definition of the rupture surface in the branch traction-traction of the Rankine model. The reinforcements were modeled in a discrete approach with perfect bond. Finally, a comparative analysis is made between the numerical results and calculated criteria showing the future of high performance reinforced concrete in this beginning of 21st century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for an adequate destination to the tires without use is a problem for many countries. The use of tire rubber in concrete through the partial substitution of the small aggregate has for objective the withdrawal of this material of the environment besides serving as alternative material in places that present sand scarcity. However, to use this type of concrete in civil construction it's necessary to verify its structural behavior. The behavior of the adherence enters the bar of armor and the concrete surrounding it has decisive importance with relation to the load capacity of the structures of reinforced concrete. In this context, this work presents, argues and evaluates the results of the experimental studies for determination of the adherence tension according to pulling up assays pull-out normalized for CEB RC6 and also related in the ASTM C-234 in concrete with and without rubber residues. Armors of nominal diameter of 10,0; 12,5 and 16 mm had been used and concrete contend 10% of rubber fibres in substitution to the sand in volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new technique to model interfaces by means of degenerated solid finite elements, i.e., elements with a very high aspect ratio, with the smallest dimension corresponding to the thickness of the interfaces. It is shown that, as the aspect ratio increases, the element strains also increase, approaching the kinematics of the strong discontinuity. A tensile damage constitutive relation between strains and stresses is proposed to describe the nonlinear behavior of the interfaces associated with crack opening. To represent crack propagation, couples of triangular interface elements are introduced in between all regular (bulk) elements of the original mesh. With this technique the analyses can be performed integrally in the context of the continuum mechanics and complex crack patterns involving multiple cracks can be simulated without the need of tracking algorithms. Numerical tests are performed to show the applicability of the proposed technique, studding also aspects related to mesh objectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Masonry spandrels together with shear walls are structural components of a masonry building subjected to lateral loads. Shear walls are the main components of this structural system, even if masonry spandrels are the elements that ensure the connection of shear wall panels and the distribution of stresses through the masonry piers. The use of prefabricated truss type bars in the transversal and longitudinal directions is usually considered a challenge, even if the simplicity of the applications suggested here alleviate some of the possible difficulties. This paper focus on the experimental behavior of masonry spandrels reinforced with prefabricated trusses, considering different possibilities for the arrangement of reinforcement and blocks. Reinforced spandrels with three and two hollow cell concrete blocks and with different reinforcement ratios have been built and tested using a four and three point loading test configuration. Horizontal bed joint reinforcement increased the capacity of deformation as well as the ultimate load, leading to ductile responses. Vertical reinforcement increased the shear strength of the masonry spandrels and its distribution play a central role on the shear behavior. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural durability is an important criterion that must be evaluated for every type of structure. Concerning reinforced concrete members, chloride diffusion process is widely used to evaluate durability, especially when these structures are constructed in aggressive atmospheres. The chloride ingress triggers the corrosion of reinforcements; therefore, by modelling this phenomenon, the corrosion process can be better evaluated as well as the structural durability. The corrosion begins when a threshold level of chloride concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in literature, deterministic approaches fail to predict accurately the corrosion time initiation due the inherent randomness observed in this process. In this regard, structural durability can be more realistically represented using probabilistic approaches. This paper addresses the analyses of probabilistic corrosion time initiation in reinforced concrete structures exposed to chloride penetration. The chloride penetration is modelled using the Fick's diffusion law. This law simulates the chloride diffusion process considering time-dependent effects. The probability of failure is calculated using Monte Carlo simulation and the first order reliability method, with a direct coupling approach. Some examples are considered in order to study these phenomena. Moreover, a simplified method is proposed to determine optimal values for concrete cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP). Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test"), the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of an extensive work about the technological development, experimental analysis and numerical modeling of steel fibre reinforced concrete pipes. The first part ("Steel fibre reinforced concrete pipes. Part 1: technological analysis of the mechanical behavior") dealt with the technological development of the experimental campaign, the test procedure and the discussion of the structural behavior obtained for each of the dosages of fibre used. This second part deals with the aspects of numerical modeling. In this respect, a numerical model called MAP, which simulates the behavior of fibre reinforced concrete pipes with medium-low range diameters, is introduced. The bases of the numerical model are also mentioned. Subsequently, the experimental results are contrasted with those produced by the numerical model, obtaining excellent correlations. It was possible to conclude that the numerical model is a useful tool for the design of this type of pipes, which represents an important step forward to establish the structural fibres as reinforcement for concrete pipes. Finally, the design for the optimal amount of fibres for a pipe with a diameter of 400 mm is presented as an illustrating example with strategic interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the analysis of probabilistic corrosion time initiation in reinforced concrete structures exposed to ions chloride penetration. Structural durability is an important criterion which must be evaluated in every type of structure, especially when these structures are constructed in aggressive atmospheres. Considering reinforced concrete members, chloride diffusion process is widely used to evaluate the durability. Therefore, at modelling this phenomenon, corrosion of reinforcements can be better estimated and prevented. These processes begin when a threshold level of chlorides concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in the literature, deterministic approaches fail to predict accurately the corrosion time initiation due to the inherently randomness observed in this process. In this regard, the durability can be more realistically represented using probabilistic approaches. A probabilistic analysis of ions chloride penetration is presented in this paper. The ions chloride penetration is simulated using the Fick's second law of diffusion. This law represents the chloride diffusion process, considering time dependent effects. The probability of failure is calculated using Monte Carlo simulation and the First Order Reliability Method (FORM) with a direct coupling approach. Some examples are considered in order to study these phenomena and a simplified method is proposed to determine optimal values for concrete cover.