921 resultados para Pattern Recognition, Visual
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
Monitoring of sewage sludge has proved the presence of many polar anthropogenic pollutants since LC/MS techniques came into routine use. While advanced techniques may improve characterizations, flawed sample processing procedures, however, may disturb or disguise the presence and fate of many target compounds present in this type of complex matrix before analytical process starts. Freeze-drying or oven-drying, in combination with centrifugation or filtration as sample processing techniques were performed followed by visual pattern recognition of target compounds for assessment of pretreatment processes. The results shown that oven-drying affected the sludge characterization, while freeze-drying led to less analytical misinterpretations.
Resumo:
This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.
Resumo:
The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.
Resumo:
The chemical composition of apple juices may be used to discriminate between the varieties for consumption and those for raw material. Fuji and Gala have a chemical pattern that can be used for this classification. Multivariate methods correlate independent continuous chemical descriptors with the categorical apple variety. Three main descriptors of apple juice were selected: malic acid, total reducing sugar and total phenolic compounds. A chemometric approach, employing PCA and SIMCA, was used to classify apple juice samples. PCA was performed with 24 juices from Fuji and Gala, and SIMCA, with 15 juices. The exploratory and predictive models recognized 88% and 64%, respectively, as belonging to a mixed domain. The apple juice from commercial fruits shows a pattern related to cv. Fuji and Gala with boundaries from 0.18 to 0.389 g.100 mL-1 (malic acid), from 8.65 to 15.18 g.100 mL-1 (total reducing sugar) and from 100 to 400 mg.L-1 (total phenolic compounds), but such boundaries were slightly shorter in the remaining set of commercial apple juices, specifically from 0.16 to 0.36 g.100 mL-1, from 9.25 to 15.5 g.100 mL-1 and from 180 to 606 mg.L-1 for acidity, reducing sugar and phenolic compounds, respectively, representing the acid, sweet and bitter tastes.
Resumo:
L’objectif principal de cette thèse était de quantifier et comparer l’effort requis pour reconnaître la parole dans le bruit chez les jeunes adultes et les personnes aînées ayant une audition normale et une acuité visuelle normale (avec ou sans lentille de correction de la vue). L’effort associé à la perception de la parole est lié aux ressources attentionnelles et cognitives requises pour comprendre la parole. La première étude (Expérience 1) avait pour but d’évaluer l’effort associé à la reconnaissance auditive de la parole (entendre un locuteur), tandis que la deuxième étude (Expérience 2) avait comme but d’évaluer l’effort associé à la reconnaissance auditivo-visuelle de la parole (entendre et voir le visage d’un locuteur). L’effort fut mesuré de deux façons différentes. D’abord par une approche comportementale faisant appel à un paradigme expérimental nommé double tâche. Il s’agissait d’une tâche de reconnaissance de mot jumelée à une tâche de reconnaissance de patrons vibro-tactiles. De plus, l’effort fut quantifié à l’aide d’un questionnaire demandant aux participants de coter l’effort associé aux tâches comportementales. Les deux mesures d’effort furent utilisées dans deux conditions expérimentales différentes : 1) niveau équivalent – c'est-à-dire lorsque le niveau du bruit masquant la parole était le même pour tous les participants et, 2) performance équivalente – c'est-à-dire lorsque le niveau du bruit fut ajusté afin que les performances à la tâche de reconnaissance de mots soient identiques pour les deux groupes de participant. Les niveaux de performance obtenus pour la tâche vibro-tactile ont révélé que les personnes aînées fournissent plus d’effort que les jeunes adultes pour les deux conditions expérimentales, et ce, quelle que soit la modalité perceptuelle dans laquelle les stimuli de la parole sont présentés (c.-à.-d., auditive seulement ou auditivo-visuelle). Globalement, le ‘coût’ associé aux performances de la tâche vibro-tactile était au plus élevé pour les personnes aînées lorsque la parole était présentée en modalité auditivo-visuelle. Alors que les indices visuels peuvent améliorer la reconnaissance auditivo-visuelle de la parole, nos résultats suggèrent qu’ils peuvent aussi créer une charge additionnelle sur les ressources utilisées pour traiter l’information. Cette charge additionnelle a des conséquences néfastes sur les performances aux tâches de reconnaissance de mots et de patrons vibro-tactiles lorsque celles-ci sont effectuées sous des conditions de double tâche. Conformément aux études antérieures, les coefficients de corrélations effectuées à partir des données de l’Expérience 1 et de l’Expérience 2 soutiennent la notion que les mesures comportementales de double tâche et les réponses aux questionnaires évaluent différentes dimensions de l’effort associé à la reconnaissance de la parole. Comme l’effort associé à la perception de la parole repose sur des facteurs auditifs et cognitifs, une troisième étude fut complétée afin d’explorer si la mémoire auditive de travail contribue à expliquer la variance dans les données portant sur l’effort associé à la perception de la parole. De plus, ces analyses ont permis de comparer les patrons de réponses obtenues pour ces deux facteurs après des jeunes adultes et des personnes aînées. Pour les jeunes adultes, les résultats d’une analyse de régression séquentielle ont démontré qu’une mesure de la capacité auditive (taille de l’empan) était reliée à l’effort, tandis qu’une mesure du traitement auditif (rappel alphabétique) était reliée à la précision avec laquelle les mots étaient reconnus lorsqu’ils étaient présentés sous les conditions de double tâche. Cependant, ces mêmes relations n’étaient pas présentes dans les données obtenues pour le groupe de personnes aînées ni dans les données obtenues lorsque les tâches de reconnaissance de la parole étaient effectuées en modalité auditivo-visuelle. D’autres études sont nécessaires pour identifier les facteurs cognitifs qui sous-tendent l’effort associé à la perception de la parole, et ce, particulièrement chez les personnes aînées.
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds
Resumo:
Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu
Resumo:
Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification
Resumo:
The visual recognition of complex movements and actions is crucial for communication and survival in many species. Remarkable sensitivity and robustness of biological motion perception have been demonstrated in psychophysical experiments. In recent years, neurons and cortical areas involved in action recognition have been identified in neurophysiological and imaging studies. However, the detailed neural mechanisms that underlie the recognition of such complex movement patterns remain largely unknown. This paper reviews the experimental results and summarizes them in terms of a biologically plausible neural model. The model is based on the key assumption that action recognition is based on learned prototypical patterns and exploits information from the ventral and the dorsal pathway. The model makes specific predictions that motivate new experiments.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm