970 resultados para Pasteur Institute of Tangier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allergic reactions to drugs are a serious public health concern. In 2013, the Division of Allergy, Immunology, and Transplantation of the National Institute of Allergy and Infectious Diseases sponsored a workshop on drug allergy. International experts in the field of drug allergy with backgrounds in allergy, immunology, infectious diseases, dermatology, clinical pharmacology, and pharmacogenomics discussed the current state of drug allergy research. These experts were joined by representatives from several National Institutes of Health institutes and the US Food and Drug Administration. The participants identified important advances that make new research directions feasible and made suggestions for research priorities and for development of infrastructure to advance our knowledge of the mechanisms, diagnosis, management, and prevention of drug allergy. The workshop summary and recommendations are presented herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality of medical care has been indirectly assessed through the collection of negative outcomes. A preventable death is one that could have been avoided if optimum care had been offered. The general objective of the present project was to analyze the perinatal mortality at the National Institute of Perinatology (located in Mexico City) by social, biological and some available components of quality of care such as avoidability, provider responsibility, and structure and process deficiencies in the delivery of medical care. A Perinatal Mortality Committee data base was utilized. The study population consisted of all singleton perinatal deaths occurring between January 1, 1988 and June 30, 1991 (n = 522). A proportionate study was designed.^ The population studied mostly corresponded to married young adult mothers, who were residents of urban areas, with an educational level of junior high school or more, two to three pregnancies, and intermediate prenatal care. The mean gestational age at birth was 33.4 $\pm$ 3.9 completed weeks and the mean birthweight at birth was 1,791.9 $\pm$ 853.1 grams.^ Thirty-five percent of perinatal deaths were categorized as avoidable. Postnatal infection and premature rupture of membranes were the most frequent primary causes of avoidable perinatal death. The avoidable perinatal mortality rate was 8.7 per 1000 and significantly declined during the study period (p $<$.05). Preventable perinatal mortality aggregated data suggested that at least part of the mortality decline for amenable conditions was due to better medical care.^ Structure deficiencies were present in 35% of avoidable deaths and process deficiencies were present in 79%. Structure deficiencies remained constant over time. Process deficiencies consisted of diagnosis failures (45.8%) and treatment failures (87.3%), they also remained constant through the years. Party responsibility was as follows: Obstetric (35.4%), pediatric (41.4%), institutional (26.5%), and patient (6.6%). Obstetric responsibility significantly increased during the study period (p $<$.05). Pediatric responsibility declined only for newborns less than 1500 g (p $<$.05). Institutional responsibility remained constant.^ Process deficiencies increased the risk for an avoidable death eightfold (confidence interval 1.7-41.4, p $<$.01) and provider responsibility ninety-fivefold (confidence interval 14.8-612.1, p $<$.001), after adjustment for several confounding variables. Perinatal mortality due to prematurity, barotrauma and nosocomial infection, was highly preventable, but not that due to transpartum asphyxia. Once specific deficiencies in the quality of care have been identified, quality assurance actions should begin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset is based on samples collected in the summer of 2001 in the Western Black Sea in front of Bulgaria coast (transects at c. Kaliakra and c. Galata). The whole dataset is composed of 26 samples (from 10 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 10-20, 10-25, 25-50, 50-75, 75-90. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset is based on samples collected in the spring of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 76 samples (from 27 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling on zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).