230 resultados para Pastes
Resumo:
In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS) of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm). Cements were either: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated through mylar strips (chemical and photo-activation = dual-cured groups) (n = 10). After a 24 h storage in 37 masculineC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It) and a zinc phosphate cement served as controls. Comparative analyses were performed: 1) between the activation modes for each dual-curing resin cement, using Students t test; 2) among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukeys test (alpha = 0.05). The dual-cured groups of Scotchbond Resin Cement (53.3 MPa), Variolink II (48.4 MPa) and Rely X (51.6 MPa) showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively) (p < 0.05). For Enforce (48.5 and 47.8 MPa) and Panavia F (44.0 and 43.3 MPa), no significant difference was found between the activation modes (p > 0.05). The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa) (p > 0.05), and higher DTS than that of zinc phosphate (4.2 MPa). Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05).
Diametral tensile strength of dual-curing resin cements submitted exclusively to autopolymerization.
Resumo:
OBJECTIVES: To evaluate, at different times, the diametral tensile strength (DTS) of dual-curing resin cements that were not photopolymerized. METHOD AND MATERIALS: Equal amounts of base and catalyst pastes of Panavia F (Kuraray), Variolink II (Vivadent), Rely X (3M ESPE), and Enforce (Dentsply) were mixed and inserted into cylindrical molds (4 x 2 mm) (n = 10). Cements were not photopolymerized. DTS test was performed in a testing machine at 30 minutes, 1 hour, 24 hours, and 7 days. The specimens were stored in light-proof containers with distilled water at 37 degrees C until the time of assay. An autopolymerizing resin cement (Cement-It, Jeneric Pentron) and a zinc phosphate cement served as controls. One-way analysis of variance (ANOVA) and Tukey test were performed separately for each cement and for each time (P <.05). RESULTS: All cements showed an increase in DTS when tested at 1 and 24 hours. Tests at 24 hours and 7 days revealed no statistically significant differences. In all groups, the zinc phosphate cement had the lowest DTS mean values (2.1 MPa, 3.6 MPa, 6.5 MPa, and 6.9 MPa), while Cement-It (35.1 MPa, 33.6 MPa, 46.9 MPa, and 46.3 MPa) and Enforce (31.9 MPa, 31.7 MPa, 43.4 MPa, and 47.6 MPa) presented the highest DTS mean values. CONCLUSION: All cements presented maximal strength at 24 hours. The dual-curing resin cements, even when nonphotopolymerized, demonstrated higher DTS than the zinc phosphate cement and similar or lower values than the autopolymerizing resin cement.
Resumo:
This paper describes the clinical courses of three cases with extra-oral sinus tract formation, from diagnosis and treatment to short-term follow-up and evaluation. All teeth involved had periradicular radiolucent areas noted on radiographic examination and extra-oral sinus tracts appearing on the chin with exudation and unpleasant aesthetic appearance. The adopted treatment protocol included treating the sinus tract surface simultaneously with the root canal therapy. After root canal shaping using 5.25% sodium hypochlorite solution, calcium hydroxide-based pastes associated with different vehicles were inserted into the root canal for 4 months, and were changed monthly. All the sinus tracts healed in 7 to 10 days. The apical lesions were completely repaired in a maximum period of 24 months. The treatment adopted provided a complete healing of the periapical lesions in a short follow-up period. Surgical repair of the cutaneous sinus tract was therefore unnecessary. © 2007 The Authors. Journal compilation © 2007 Australian Society of Endodontology.
Resumo:
The purpose of this study was to evaluate the residual antibacterial activity of several calcium hydroxide [Ca(OH) 2]-based pastes, placed in root canals of dogs' teeth with induced chronic periapical lesions. Root canals were instrumented with the ProFile rotary system and filled with 4 pastes: G1 (n=16): Ca(OH) 2 paste + anesthetic solution; G2 (n=20): Calen® paste + camphorated pmonochlorophenol (CMCP); G3 (n=18): Calen®; and G4 (n=18): Ca(OH) 2 paste + 2% chlorhexidine digluconate. After 21 days, the pastes were removed with size 60 K-files and placed on Petri plates with agar inoculated with Micrococcus luteus ATCC 9341. Pastes that were not placed into root canals served as control. After pre-diffusion, incubation and optimization, the inhibition zones of bacterial growth were measured and analyzed by Mann-Whitney U test at 5% significance level. All pastes showed residual antibacterial activity. The control samples had larger halos (p<0.05). The mean residual antibacterial activity halos in G1, G2, G3 and G4 were 7.6; 10.4; 17.7 and 21.4 mm, respectively. The zones of bacterial growth of G4 were significantly larger than those of G1 and G2 (p<0.05). In conclusion, regardless of the vehicle and antiseptic, all Ca(OH) 2-based pastes showed different degrees of measurable residual antibacterial activity. Furthermore, unlike CMCP, chlorhexidine increased significantly the antibacterial activity of Ca(OH) 2.
Resumo:
Objective: To evaluate the influence of different air abrasion protocols on the surface roughness of an yttria-stabilized polycrystalline tetragonal zirconia) (Y-TZP) ceramic, as well as the surface topography of the ceramic after the treatment. Method: Fifty-four specimens (7.5×4×7.5mm) obtained from two ceramic blocks (LAVA, 3M ESPE) were flattened with fine-grit sandpaper and subjected to sintering in the ceramic system's specific firing oven. Next, the specimens were embedded in acrylic resin and the surfaces to be treated were polished in a polishing machine using sandpapers of decreasing abrasion (600- to 1,200-grit) followed by felt discs with 10μm and 3μm polishing pastes and colloidal silica. The specimens were then randomly assigned to 9 groups, according to factors particle and pressure(n=6): Gr1- control; Gr2- Al 2O 3(50μm)/2.5 bar; Gr3- Al 2O 3(110μm)/2.5 bar; Gr4- SiO 2(30μm)/2.5 bar; Gr5- SiO 2(30μm)/2.5 bar; Gr6- Al 2O 3(50μm)/3.5 bar; Gr7- Al2O3(110μm)/3.5 bar; Gr8- SiO 2(30μm)/3.5 bar; Gr9- SiO 2(30μm)/3.5 bar. After treatments, surface roughness was analyzed by a digital optical profilometer and the morphology was examined by scanning electron microscopy (SEM). Data (μm) were subjected to statistical analysis by Dunnett's test (5%), two-way ANOVA and Tukey's test (5%). Results: The type of particle (p=0.0001) and the pressure (p=0.0001) used in the air abrasion protocols influenced the surface roughness values among the experimental groups (ANOVA). The mean surface roughness values (μm) obtained for the experimental groups (Gr2 to Gr9) were, respectively: 0.37 D; 0.56 BC; 0.46 BC; 0.48 CD; 0.59 BC; 0.82 A; 0.53B CD; 0.67 AB. The SEM analysis revealed that Al 2O 3, regardless of the particle size and pressure used, caused damage to the surface of the specimens, as it produced superficial damages on the ceramic, in the form of grooves and cracks. Conclusion: Al2O3 (110 μm/3.5 bar) air abrasion promoted the highest surface roughness on the ceramics, but it does not mean that this protocol promotes better ceramic-cement union compared to the other air abrasion protocols.
Resumo:
A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work we described for the first time the construction of a 25 μL electrochemical cell from low temperature co-fired ceramic (LTCC) material and carbon screen-printed electrode applicable in portable devices. Firstly, a carbon screen-printed electrode was prepared and characterized by cyclic voltammetry and scanning electron microscopy. Afterwards carbon polymeric film and metal pastes were dropped into the LTCC cell cavities in order to determine the device electrodes, and this arrangement was also electrochemically characterized. The great advantage of this promising device is the simple construction method and its widespread applicability in reusable portable devices. © 2013 The Royal Society of Chemistry.
Resumo:
Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Construção e desenvolvimento de um secador de leito pulso-fluidizado para secagem de pastas e polpas
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)