995 resultados para Pascucci, Silvana


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the toxic effect of indole-3-acetic acid (IAA) combined with horseradish peroxidase (HRP) on Prototheca zopfii from bovine mastitis. P. zopfii isolates were identified and characterized by morpho-physiological parameters; presences of P. zopfii genotype 2 were also investigated. Subsequently, P. zopfii was incubated in the absence (control) or presence of IAA/HRP and examined for: (i) cell viability; (ii) colonies number formation; (iii) antioxidant enzyme activity; and (iv) DNA integrity. Significance of differences was calculated using ANOVA and Tukey`s test (P a parts per thousand currency sign 0.05). As evidenced by Trypan blue exclusion and colony formation in Sabouraud dextrose agar, IAA/HRP addition to the culture reduced respective P. zopfii viability and P. zopfii colony formation in a concentration- and time-dependent manner. IAA/HRP specifically reduced cell viability in 10, 15, 20, 25, and 32% after 4, 6, 8, 10, and 12 h of incubation, respectively, compared with the control at the same time. The number of colony formation was inhibited (45, 82, and 88%) by IAA/HRP after 4, 6, and 9 h of incubation, respectively, compared with the control at the same time. In addition, P. zopfii antioxidant activity increased measurably in the presence of IAA/HRP (6 h); superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase increased by 90, 120, 150% and 3.4 times, compared with the controls. IAA/HRP did not appear to effect P. zopfii DNA integrity when examined by electrophoresis. In conclusion, IAA/HRP appears to function as a microbicidal mechanism on P. zopfii genotype 2 from bovine mastitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pteridium aquilinum (bracken fern) is one of the most common plants. Epidemiological studies have revealed a higher risk of certain types of cancers (i.e., esophageal, gastric) in people who consume bracken fern directly ( as crosiers or rhizomes) or indirectly through the consumption of milk from livestock that fed on the plant. In animals, evidence exists regarding the associations between chronic bracken fern intoxication, papilloma virus infection, and the development of carcinomas. While it is possible that some carcinogens in bracken fern could be responsible for these cancers in both humans and animals, it is equally plausible that the observed increases in cancers could be related to induction of an overall immunosuppression by the plant/its various constituents. Under the latter scenario, normal tumor surveillance responses against nascent (non-bracken-induced) cancers or responses against viral infections ( specifically those linked to induction of cancers) might be adversely impacted by continuous dietary exposure to this plant. Therefore, the overall objective of this study was to evaluate the immunomodulatory effects of bracken fern following daily ingestion of its extract by a murine host over a period of 14 ( or up to 30) days. In C57BL/6 mice administered ( by gavage) the extract, histological analyses revealed a significant reduction in splenic white pulp area. Among a variety of immune response parameters/functions assessed in these hosts and isolated cells, both delayed-type hypersensitivity (DTH) analysis and evaluation of IFN gamma. production by NK cells during T(H)1 priming were also reduced. Lastly, the innate response in these hosts-assessed by analysis of NK cell cytotoxic functionality-was also diminished. The results here clearly showed the immunosuppressive effects of P. aquilinum and that many of the functions that were modulated could contribute to the increased risk of cancer formation in exposed hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a 4-year-old girl with blepharophimosis, a typical facial gestalt and skeletal abnormalities seen in the blepharofacioskeletal syndrome (BFSS). A comparative review with previous cases provides further evidence that BFSS and Schilbach-Rott syndrome (SRS) are the same condition. (C) 2008 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maranta is a neotropical genus, species of which are found in moist and shaded habitats in forests and in the cerrado. During the preparation of Maranta`s monograph for the Flora Neotropica, four new species were discovered and are now described: Maranta longiflora S.Vieira & V.C.Souza, Maranta coriacea S.Vieira & V.C.Souza, Maranta pulchra S.Vieira & V.C.Souza and Maranta purpurea S.Vieira & V.C.Souza. These species are found in dry habitats, frequently near watercourses or occasionally in humid and shaded places. Two, M. pulchra and M. purpurea, seem to be endemic to the state of Mato Grosso. (C) 2008 The Linnean Society of London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated. Methods: Groups of freshly isolated rat pancreatic islets were incubated in 10-mmol/L glucose with palmitate, LY294002, or fumonisin B1 for the measurement of the phosphorylation and the content of ERK1/2, JNK/SAPK, and v-akt murine thymoma viral oncongene (AKT) (serine 473) by immunoblotting. The expressions of the immediate early genes, c-fos and c-jun, were evaluated by reverse transcription-polymerase chain reaction. Results: Glucose at 10 mmol/L induced ERK1/2 and AKT phosphorylations and decreased SAPK/JNK phosphorylation. Palmitate (0.1 mmol/L) abolished the glucose effect on ERK1/2, AKT, and SAPK/JNK phosphorylations. LY294002 caused a similar effect. The inhibitory effect of palmitate on glucose-induced ERK1/2 and AKT phosphorylation changes was not observed in the presence of fumonisin B1. Glucose increased c-fos and decreased c-jun expressions. Palmitate and LY294002 abolished these latter glucose effects. The presence of fumonisin B1 abolished the effect induced by palmitate on c-jun expression. Conclusions: Our results suggest that short-term changes of mitogen-activated protein kinase and AKT signaling pathways and c-fos and c-jun expressions caused by glucose are abolished by palmitate through phosphatidylinositol 3-kinase inhibition via ceramide synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85 alpha/55 alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85 alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55 alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect. (Endocrinology 150: 2080-2086, 2009)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In animal models of diet-induced obesity, the activation of an inflammatory response in the hypothalamus produces molecular and functional resistance to the anorexigenic hormones insulin and leptin. The primary events triggered by dietary fats that ultimately lead to hypothalamic cytokine expression and inflammatory signaling are unknown. Here, we test the hypothesis that dietary fats act through the activation of toll-like receptors 2/4 and endoplasmic reticulum stress to induce cytokine expression in the hypothalamus of rodents. According to our results, long-chain saturated fatty acids activate predominantly toll-like receptor 4 signaling, which determines not only the induction of local cytokine expression but also promotes endoplasmic reticulum stress. Rats fed on a monounsaturated fat-rich diet do not develop hypothalamic leptin resistance, whereas toll-like receptor 4 loss-of-function mutation and immunopharmacological inhibition of toll-like receptor 4 protects mice from diet-induced obesity. Thus, toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our aim was to evaluate the effects of granulocyte colony-stimulating factor (G-CSF) on early cardiac arrhythmias after myocardial infarction (MI) and the impact on survival. Male Wistar rats received repeated doses of 50 mu g/kg G-CSF (MI-GCSF group) or vehicle (MI group) at 7, 3, and 1 days before surgery. MI was induced by permanent occlusion of left corollary artery. The electrocardiogram was obtained before occlusion and then for 30 minutes after surgery. Events and duration of ventricular arrhythmias were analyzed. The levels of connexin43 (Cx43) were measured by Western blot immediately before MI production. Survival was significantly increased in MI-GCSF pretreated group (74% versus 52.0% MI. P < 0.05). G-CSF pretreatment also significantly reduced the ventricular premature beats when compared with the untreated-MI group (201 +/- 47 versus 679 +/- 117, P < 0.05). The number and the duration of ventricular tachycardia were smaller in the MI-G-CSF group, as well as the number of ventricular fibrillation episodes (10% versus 69% in NIL P < 0.05). Cx43 levels were significantly increased by G-CSF treatment (1.27 +/- 0.13 versus 0.86 +/- 0.11; P < 0.05). The MI size 24 hours after occlusion was reduced by G-CSF pretreatment (36 +/- 3% versus 44 +/- 2% of left ventricle in MI group; P < 0.05). The increase of Cx43 expression in the heart may explain the reduced incidence in ventricular arrhythmias in the early phases after coronary artery occlusion in rats, thus increasing survival after MI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity results from an imbalance between food intake and energy expenditure, two vital functions that are tightly controlled by specialized neurons of the hypothalamus. The complex mechanisms that integrate these two functions are only beginning to be deciphered. The objective of this study was to determine the effect of two thermogenesis-inducing conditions, i.e., ingestion of a high-fat (HF) diet and exposure to cold environment, on the expression of 1,176 genes in the hypothalamus of Wistar rats. Hypothalamic gene expression was evaluated using a cDNA macroarray approach. mRNA and protein expressions were determined by reverse-transcription PCR (RT-PCR) and immunoblot. Cold exposure led to an increased expression of 43 genes and to a reduced expression of four genes. HF diet promoted an increased expression of 90 genes and a reduced expression of 78 genes. Only two genes (N-methyl-D-aspartate (NMDA) receptor 2B and guanosine triphosphate (GTP)-binding protein G-alpha-i1) were similarly affected by both thermogenesis-inducing conditions, undergoing an increment of expression. RT-PCR and immunoblot evaluations confirmed the modulation of NMDA receptor 2B and GTP-binding protein G-alpha-i1, only. This corresponds to 0.93% of all the responsive genes and 0.17% of the analyzed genes. These results indicate that distinct environmental thermogenic stimuli can modulate predominantly distinct profiles of genes reinforcing the complexity and multiplicity of the hypothalamic mechanisms that regulate energy conservation and expenditure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuro protection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB1) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesion (2-30 days), the chick brains were subjected to immunohistochemical, immunoblotting, and real-time PCR procedures to evaluate CB1 expression. TUNEL and Fluoro-Jade B were used to verify the possible occurrence of cell death, and immunostaining for the microtubule-associated protein MAP-2 was performed to verify possible dendritic remodeling after lesions. No cell death could be observed in the deafferented tectum, at least up to 30 days postlesion, although Fluoro-Jade B could reveal degenerating axons and terminals. Retinal ablation seems to generate an increase of CB1 protein in the optic tectum and other retinorecipient visual areas, which paralleled an increase in MAP-2 staining. On the other hand, CB, mRNA levels were not changed after retinal ablation. Our results reveal that CB, expression in visual structures of the adult chick brain may be negatively regulated by the retinal innervation. The increase of CB1 receptor expression observed after retinal removal indicates that these receptors are not presynaptic in retinal axons projecting to the tectum and suggests a role of the cannabinoid system in plasticity processes ensuing after lesions. (c) 2008 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-alpha serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats. (Endocrinology 152: 1253-1263, 2011)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aim. Granulocyte colony-stimulating factor (G-CSF) reduces myocardial injury and improves cardiac function after myocardial infarction (MI). We investigated the early alterations provided by G-CSF and the chronic repercussions in infarcted rats. Methods. Male Wistar rats (200-250g) received vehicle (MI) or G-CSF (MI-GCSF) (50 mu g/kg, sc) at 7, 3 and 1 days before MI surgery. Afterwards MI was produced and infarct size was measured 1 and 15 days after surgery. Expression of anti-and proapoptotic proteins was evaluated immediately before surgery. 24 hours after surgery, apoptotic nuclei were evaluated. Two weeks after MI, left ventricular (LV) function was evaluated, followed by in situ LV diastolic pressure-volume evaluation. Results. Infarct size was decreased by 1 day pretreatment before occlusion (36 +/- 2.8 vs. 44 +/- 2.1% in MI; P<0.05) and remained reduced at 15 days after infarction (28 +/- 2.2 vs. 36 +/- 1.4% in MI; P<0.05). G-CSF pretreatment increased Bcl-2 and Bcl-xL protein expression, but did not alter Bax in LV. Apoptotic nuclei were reduced by treatment (Sham: 0.46 +/- 0.42, MI: 15.5 +/- 2.43, MI-GCSF: 5.34 +/- 3.34%; P<0.05). Fifteen days after MI, cardiac function remained preserved in G-CSF pretreated rats. The LV dilation was reduced in MI-G-CSF group as compared to MI rats, being closely associated with infarct size. Conclusion. The early beneficial effects of G-CSF were essentials to preserve cardiac function at a chronic stage of myocardial infarction. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, Gorjao R, Leite AR, Anhe GF, Bordin S. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. Am J Physiol Regul Integr Comp Physiol 300: R92-R100, 2011. First published November 10, 2010; doi:10.1152/ajpregu.00169.2010.-Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in beta-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2 alpha phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in beta-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in beta-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phosphoERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.