921 resultados para Parasitic Diseases
Resumo:
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Resumo:
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.
Resumo:
This study applied a socioeconomic questionnaire designed to evaluate the frequency of intestinal parasites and characterize epidemiological, nutritional, and immunological variables in 105 HIV/AIDS patients - with and without parasitic infections, attending the Day Hospital in Botucatu, UNESP, from 2007 to 2008. Body mass index was calculated and the following tests performed: parasitological stool examinations; eosinophil, IgE, CD4(+) T and CD8(+) T lymphocyte cell counts; albumin test; viral load measure; and TNF-alpha, IFN-gamma, IL-2, IL-5 and IL-10 cytokine levels. Results were positive for parasitic intestinal infections in 12.4% of individuals. Most patients had good socioeconomic conditions with basic sanitation, urban dwellings, treated water supply and sewage, good nutritional and immunological status and were undergoing HAART. Parasites were found at the following frequencies: Entamoeba - five patients (38.5%), Giardia lamblia-four (30.7%), Blastocystis hominis-three (23.0%), Endolimax nana-two (15.4%), and Ascaris lumbricoides - one (7.7%). There were no significant differences between the two groups for eosinophils, albumin, IgE, CD4(+) T and CD8(+) T lymphocytes, INF-gamma, IL-2, or IL-10. Most patients also showed undetectable viral load levels. Significant differences were found for TNF-alpha and IL-5. These results show the importance of new studies on immunodeficient individuals to increase understanding of such variables.
Resumo:
The prevalence of intestinal parasitosis was investigated in a primary school located in Rubiao Junior, a peri-urban district of Botucatu, Sao Paulo state, Brazil, in order to assess the effect of treatment and practical measures of prophylaxis in the control of parasitic infections among 7-to-18-year-old school children of a low socio-economic status. The first series of parasitological examinations included 219 school children, of which 123 (56.1%) were found to be infected with one or more parasite species. Eighty-four children carrying pathogenic parasites were submitted to various anti-parasitic treatment schedules. We re-evaluated 75 (89%) students after 4 to 6 months postchemotherapy. The results indicate that the combination of treatment with prophylactic measures has been successful in the control of parasitic infections, since reinfection rates were generally low (≤5.3%), except for Giardia lamblia infections (18.6%), and a marked reduction on the prevalence rates was observed with a significant percentage of cure (≤73.1%) in children infected with most parasite species. The reasons for the apparent failure in the control of infections caused by Hymenolepsis nana and Strongyloides stercoralis are discussed.
Resumo:
Blood transfusion and transplantation may represent efficient mechanisms of spreading infectious agents to naive populations. In the developed countries, as a consequence of globalization, several factors such as international commerce, tourism, and immigration have acted as important features for the emergence or reemergence of infectious diseases previously referred to as tropical. This article reviews the relevant bacterial, protozoan and viral infections that are more frequently associated with blood transfusion and/or solid organ or marrow transplantation and may affect susceptible populations worldwide.
Resumo:
Background: Magnetic hyperthermia is currently a clinical therapy approved in the European Union for treatment of tumor cells, and uses magnetic nanoparticles (MNPs) under time-varying magnetic fields (TVMFs). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, given that the therapeutic drugs available have severe side effects and that there are drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe3O4 MNPs in order to provoke cell death remotely using TVMFs. Methods: Iron oxide MNPs with average diameters of approximately 30 nm were synthesized by precipitation of FeSO4 in basic medium. The MNPs were added to C. fasciculata choanomastigotes in the exponential phase and incubated overnight, removing excess MNPs using a DEAE-cellulose resin column. The amount of MNPs uploaded per cell was determined by magnetic measurement. The cells bearing MNPs were submitted to TVMFs using a homemade AC field applicator (f = 249 kHz, H = 13 kA/m), and the temperature variation during the experiments was measured. Scanning electron microscopy was used to assess morphological changes after the TVMF experiments. Cell viability was analyzed using an MTT colorimetric assay and flow cytometry. Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic mechanism. No effects were observed by applying TVMF to control cells not loaded with MNPs. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies combating parasitic infection.
Resumo:
Mode of access: Internet.
Resumo:
The cotton industry in Australia funds biannual disease surveys conducted by plant pathologists. The objective of these surveys is to monitor the distribution and importance of key endemic pests and record the presence or absence of new or exotic diseases. Surveys have been conducted in Queensland since 2002/03, with surveillance undertaken by experienced plant pathologists. Monitoring of endemic diseases indicates the impact of farming practices on disease incidence and severity. The information collected gives direction to cotton disease research. Routine diagnostics has provided early detection of new disease problems which include 1) the identification of Nematospora coryli, a pathogenic yeast associated with seed and internal boll rot; and 2) Rotylenchulus reniformis, a plant-parasitic nematode. This finding established the need for an intensive survey of the Theodore district revealing that reniform was prevalent across the district at populations causing up to 30% yield loss. Surveys have identified an exotic defoliating strain (VCG 1A) and non-defoliating strains of Verticillium dahliae, which cause Verticillium wilt. An intensive study of the diversity of V. dahliae and the impact these strains have on cotton are underway. Results demonstrate the necessity of general multi-pest surveillance systems in broad acre agriculture in providing (1) an ongoing evaluation of current integrated disease management practices and (2) early detection for a suite of exotic pests and previously unknown pests.
Resumo:
2016
Resumo:
Nontuberculous mycobacteria are ubiquitous environmental organisms that have been recognised as a cause of pulmonary infection for over 50 years. Traditionally patients have had underlying risk factors for development of disease; however the proportion of apparently immunocompetent patients involved appears to be rising. Not all patients culture-positive for mycobacteria will have progressive disease, making the diagnosis difficult, though criteria to aid in this process are available. The two main forms of disease are cavitary disease (usually involving the upper lobes) and fibronodular bronchiectasis (predominantly middle and lingular lobes). For patients with disease, combination antibiotic therapy for 12-24 months is generally required for successful treatment, and this may be accompanied by drug intolerances and side effects. Published success rates range from 30-82%. As the progression of disease is variable, for some patients, attention to pulmonary hygiene and underlying diseases without immediate antimycobacterial therapy may be more appropriate. Surgery can be a useful adjunct, though is associated with risks. Randomised controlled trials in well described patients would provide stronger evidence-based data to guide therapy of NTM lung diseases, and thus are much needed.
Resumo:
Abstract A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004–2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus–B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites