963 resultados para Paper-cutting machines.
Resumo:
This Paper discusses the food and beverage machines that are located at Memorial University's Grenfell Campus and endeavors to assess how much those vending machines are being used and how they affect sustainability initiatives on campus. A survey was conducted to gauge the use of vending machines, their content and what is purchased, and if participants did not purchase from thes machines they were also asked why they did not.This survey produced many other questions that are directly linked to vending machines.Water quality on campus was heavily disscussed, along with the use of bottled water and implications associated with drinking only from bottles that are thrown away. The study concludes with a discussion of the alternative choices that can be implemented to replace vending machines.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].
Resumo:
Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].
Resumo:
Inscriptions: Verso: [stamped] Credit must be given to Leinwand from Monkmeyer Press Photo Service].
Resumo:
Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].
Resumo:
This paper draws upon part of the findings of an ethnographic study in which two seventeen year old girls were employed to interview their peer about engineering as a study and career choice. It argues that whilst girls do view engineering as being generally masculine in nature, other factors such as a lack of female role models and an emphasis on physics and maths act as barriers to young women entering the discipline. The paper concludes by noting that engineering has much to offer young women, the problem is, they simply don’t know this is the case!
Resumo:
This paper formulates a linear kernel support vector machine (SVM) as a regularized least-squares (RLS) problem. By defining a set of indicator variables of the errors, the solution to the RLS problem is represented as an equation that relates the error vector to the indicator variables. Through partitioning the training set, the SVM weights and bias are expressed analytically using the support vectors. It is also shown how this approach naturally extends to Sums with nonlinear kernels whilst avoiding the need to make use of Lagrange multipliers and duality theory. A fast iterative solution algorithm based on Cholesky decomposition with permutation of the support vectors is suggested as a solution method. The properties of our SVM formulation are analyzed and compared with standard SVMs using a simple example that can be illustrated graphically. The correctness and behavior of our solution (merely derived in the primal context of RLS) is demonstrated using a set of public benchmarking problems for both linear and nonlinear SVMs.
Resumo:
The astonishing development of diverse and different hardware platforms is twofold: on one side, the challenge for the exascale performance for big data processing and management; on the other side, the mobile and embedded devices for data collection and human machine interaction. This drove to a highly hierarchical evolution of programming models. GVirtuS is the general virtualization system developed in 2009 and firstly introduced in 2010 enabling a completely transparent layer among GPUs and VMs. This paper shows the latest achievements and developments of GVirtuS, now supporting CUDA 6.5, memory management and scheduling. Thanks to the new and improved remoting capabilities, GVirtus now enables GPU sharing among physical and virtual machines based on x86 and ARM CPUs on local workstations,computing clusters and distributed cloud appliances.
Resumo:
Abstract: In the mid-1990s when I worked for a telecommunications giant I struggled to gain access to basic geodemographic data. It cost hundreds of thousands of dollars at the time to simply purchase a tile of satellite imagery from Marconi, and it was often cheaper to create my own maps using a digitizer and A0 paper maps. Everything from granular administrative boundaries to right-of-ways to points of interest and geocoding capabilities were either unavailable for the places I was working in throughout Asia or very limited. The control of this data was either in a government’s census and statistical bureau or was created by a handful of forward thinking corporations. Twenty years on we find ourselves inundated with data (location and other) that we are challenged to amalgamate, and much of it still “dirty” in nature. Open data initiatives such as ODI give us great hope for how we might be able to share information together and capitalize not only in the crowdsourcing behavior but in the implications for positive usage for the environment and for the advancement of humanity. We are already gathering and amassing a great deal of data and insight through excellent citizen science participatory projects across the globe. In early 2015, I delivered a keynote at the Data Made Me Do It conference at UC Berkeley, and in the preceding year an invited talk at the inaugural QSymposium. In gathering research for these presentations, I began to ponder on the effect that social machines (in effect, autonomous data collection subjects and objects) might have on social behaviors. I focused on studying the problem of data from various veillance perspectives, with an emphasis on the shortcomings of uberveillance which included the potential for misinformation, misinterpretation, and information manipulation when context was entirely missing. As we build advanced systems that rely almost entirely on social machines, we need to ponder on the risks associated with following a purely technocratic approach where machines devoid of intelligence may one day dictate what humans do at the fundamental praxis level. What might be the fallout of uberveillance? Bio: Dr Katina Michael is a professor in the School of Computing and Information Technology at the University of Wollongong. She presently holds the position of Associate Dean – International in the Faculty of Engineering and Information Sciences. Katina is the IEEE Technology and Society Magazine editor-in-chief, and IEEE Consumer Electronics Magazine senior editor. Since 2008 she has been a board member of the Australian Privacy Foundation, and until recently was the Vice-Chair. Michael researches on the socio-ethical implications of emerging technologies with an emphasis on an all-hazards approach to national security. She has written and edited six books, guest edited numerous special issue journals on themes related to radio-frequency identification (RFID) tags, supply chain management, location-based services, innovation and surveillance/ uberveillance for Proceedings of the IEEE, Computer and IEEE Potentials. Prior to academia, Katina worked for Nortel Networks as a senior network engineer in Asia, and also in information systems for OTIS and Andersen Consulting. She holds cross-disciplinary qualifications in technology and law.
Resumo:
This paper compares three alternative numerical algorithms applied to a nonlinear metal cutting problem. One algorithm is based on an explicit method and the other two are implicit. Domain decomposition (DD) is used to break the original domain into subdomains, each containing a properly connected, well-formulated and continuous subproblem. The serial version of the explicit algorithm is implemented in FORTRAN and its parallel version uses MPI (Message Passing Interface) calls. One implicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable, Extensible Toolkit for Scientific Computation) software with in-house software in order to solve the subproblems. The second implicit algorithm is implemented completely within PETSc. PETSc uses MPI as the underlying communication library. Finally, a 2D example is used to test the algorithms and various comparisons are made.
Resumo:
The print substrate influences the print result in dry toner electrophotography, which is a widely used digital printing method. The influence of the substrate can be seen more easily in color printing, as that is a more complex process compared to monochrome printing. However, the print quality is also affected by the print substrate in grayscale printing. It is thus in the interests of both substrate producers and printing equipment manufacturers to understand the substrate properties that influence the quality of printed images in more detail. In dry toner electrophotography, the image is printed by transferring charged toner particles to the print substrate in the toner transfer nip, utilizing an electric field, in addition to the forces linked to the contact between toner particles and substrate in the nip. The toner transfer and the resulting image quality are thus influenced by the surface texture and the electrical and dielectric properties of the print substrate. In the investigation of the electrical and dielectric properties of the papers and the effects of substrate roughness, in addition to commercial papers, controlled sample sets were made on pilot paper machines and coating machines to exclude uncontrolled variables from the experiments. The electrical and dielectric properties of the papers investigated were electrical resistivity and conductivity, charge acceptance, charge decay, and the dielectric permittivity and losses at different frequencies, including the effect of temperature. The objective was to gain an understanding of how the electrical and dielectric properties are affected by normal variables in papermaking, including basis weight, material density, filler content, ion and moisture contents, and coating. In addition, the dependency of substrate resistivity on the electric field applied was investigated. Local discharging did not inhibit transfer with the paper roughness levels that are normal in electrophotographic color printing. The potential decay of paper revealed that the charge decay cannot be accurately described with a single exponential function, since in charge decay there are overlapping mechanisms of conduction and depolarization of paper. The resistivity of the paper depends on the NaCl content and exponentially on moisture content although it is also strongly dependent on the electric field applied. This dependency is influenced by the thickness, density, and filler contents of the paper. Furthermore, the Poole-Frenkel model can be applied to the resistivity of uncoated paper. The real part of the dielectric constant ε’ increases with NaCl content and relative humidity, but when these materials cannot polarize freely, the increase cannot be explained by summing the effects of their dielectric constants. Dependencies between the dielectric constant and dielectric loss factor and NaCl content, temperature, and frequency show that in the presence of a sufficient amount of moisture and NaCl, new structures with a relaxation time of the order of 10-3 s are formed in paper. The ε’ of coated papers is influenced by the addition of pigments and other coating additives with polarizable groups and due to the increase in density. The charging potential decreases and the electrical conductivity, potential decay rate, and dielectric constant of paper increase with increasing temperature. The dependencies are exponential and the temperature dependencies and their activation energies are altered by the ion content. The results have been utilized in manufacturing substrates for electrophotographic color printing.
Resumo:
Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual o-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving nonclassical damping is proposed. An example of modal control sucessfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components.
Resumo:
In the context of active control of rotating machines, standard optimal controller methods enable a trade-off to be made between (weighted) mean-square vibrations and (weighted) mean-square currents injected into magnetic bearings. One shortcoming of such controllers is that no concern is devoted to the voltages required. In practice, the voltage available imposes a strict limitation on the maximum possible rate of change of control force (force slew rate). This paper removes the aforementioned existing shortcomings of traditional optimal control.
Resumo:
Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual off-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving non-classical damping is proposed. An example of modal control successfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components.