967 resultados para PURE WATER
Resumo:
Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 µg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.
Resumo:
The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.
Resumo:
Densities and viscosities were measured as a function of temperature for six ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium ethylsulfate and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide. The density and the viscosity were obtained using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific at temperatures up to 393 K and 388 K with an accuracy of 10-3 g cm-3 and 1%, respectively. The effect of the presence of water on the measured values was also examined by studying both dried and water-saturated samples. A qualitative analysis of the evolution of density and viscosity with cation and anion chemical structures was performed. © The Royal Society of Chemistry 2006.
Resumo:
Ab initio calculations of large cluster models have been performed in order to study water adsorption at the five-fold coordinated adsorption site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al. The geometric parameters of the adsorbed water molecule have been optimized preparatory to analysis of binding energies, charge transfer, preferential sites of interaction, and bonding distances. We have used Mulliken population analysis methods in order to analyze charge distributions and the direction of charge transfer. We have also investigated energy gaps, HOMO energies, and SCF orbital energies as well as the acid-base properties of our cluster model. Numerical results are compared, where possible, with experiment and interpreted in the framework of various analytical models. (C) 2001 John Wiley & Sons, Inc.
Resumo:
This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.
Resumo:
A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.
Resumo:
Since 1989, researchers with the Department of Primary Industries and Fisheries (DPI&F) in Queensland, Australia, have successfully used controlled low-water exchange green-water cultures to rear the larvae of estuarine fishes and crustaceans through to metamorphosis. High survivals and excellent fry condition have been achieved for several commercially important endemic species produced for various projects. They include barramundi or sea bass, Lates calcarifer, Australian bass, Macquaria novemaculeata, dusky flathead, Platycephalus fuscus, sand whiting, Sillago ciliata, red sea bream or snapper, Pagrus auratus, banana prawn, Fenneropenaeus merguiensis, and others. The consistent success of our standardised and relatively simple approach at different localities has led to it being incorporated into general fingerling production practices at several establishments in Australia. Although post-metamorphosis rearing methods have differed for each species investigated, due to various biological and behavioural traits and project requirements, these larval rearing methods have been successful with few species-specific modifications. Initially modelled on the Taiwanese approach to rearing Penaeids in aerated low-water exchange cultures, the approach similarly appears to rely on a beneficial assemblage of micro-organisms. Conceptually, these micro-organisms may include a mixture of the air-borne primary invaders of pure phytoplankton cultures when exposed to outdoor conditions. Whilst this would vary with different sites, our experiences with these methods have consistently been favourable. Mass microalgal cultures with eco-physiological youth are used to regularly augment larval fish cultures so that rearing conditions simulate an exponential growth-phase microalgal bloom. Moderate to heavy aeration prevents settlement of particulate matter and encourages aerobic bacterial decomposition of wastes. The green-water larval rearing approach described herein has demonstrated high practical utility in research and commercial applications, and has greatly simplified marine finfish hatchery operations whilst generally lifting production capacities for metamorphosed fry in Australia. Its potential uses in areas of aquaculture other than larviculture are also discussed.
Resumo:
This study addressed the large-scale molecular zoogeography in two brackish water bivalve molluscs, Macoma balthica and Cerastoderma glaucum, and genetic signatures of the postglacial colonization of Northern Europe by them. The traditional view poses that M. balthica in the Baltic, White and Barents seas (i.e. marginal seas) represent direct postglacial descendants of the adjacent Northeast Atlantic populations, but this has recently been challenged by observations of close genetic affinities between these marginal populations and those of the Northeast Pacific. The primary aim of the thesis was to verify, quantify and characterize the Pacific genetic contribution across North European populations of M. balthica and to resolve the phylogeographic histories of the two bivalve taxa in range-wide studies using information from mitochondrial DNA (mtDNA) and nuclear allozyme polymorphisms. The presence of recent Pacific genetic influence in M. balthica of the Baltic, White and Barents seas, along with an Atlantic element, was confirmed by mtDNA sequence data. On a broader temporal and geographical scale, altogether four independent trans-Arctic invasions of Macoma from the Pacific since the Miocene seem to have been involved in generating the current North Atlantic lineage diversity. The latest trans-Arctic invasion that affected the current Baltic, White and Barents Sea populations probably took place in the early post-glacial. The nuclear genetic compositions of these marginal sea populations are intermediate between those of pure Pacific and Atlantic subspecies. In the marginal sea populations of mixed ancestry (Barents, White and Northern Baltic seas), the Pacific and Atlantic components are now randomly associated in the genomes of individual clams, which indicates both pervasive historical interbreeding between the previously long-isolated lineages (subspecies), and current isolation of these populations from the adjacent pure Atlantic populations. These mixed populations can be characterized as self-supporting hybrid swarms, and they arguably represent the most extensive marine animal hybrid swarms so far documented. Each of the three swarms still has a distinct genetic composition, and the relative Pacific contributions vary from 30 to 90 % in local populations. This diversity highlights the potential of introgressive hybridization to rapidly give rise to new evolutionarily and ecologically significant units in the marine realm. In the south of the Danish straits and in the Southern Baltic Sea, a broad genetic transition zone links the pure North Sea subspecies M. balthica rubra to the inner Baltic hybrid swarm, which has about 60 % of Pacific contribution in its genome. This transition zone has no regular smooth clinal structure, but its populations show strong genotypic disequilibria typical of a hybrid zone maintained by the interplay of selection and gene flow by dispersing pelagic larvae. The structure of the genetic transition is partly in line with features of Baltic water circulation and salinity stratification, with greater penetration of Atlantic genes on the Baltic south coast and in deeper water populations. In all, the scenarios of historical isolation and secondary contact that arise from the phylogeographic studies of both Macoma and Cerastoderma shed light to the more general but enigmatic patterns seen in marine phylogeography, where deep genetic breaks are often seen in species with high dispersal potential.
Resumo:
We describe the on-going design and implementation of a sensor network for agricultural management targeted at resource-poor farmers in India. Our focus on semi-arid regions led us to concentrate on water-related issues. Throughout 2004, we carried out a survey on the information needs of the population living in a cluster of villages in our study area. The results highlighted the potential that environment-related information has for the improvement of farming strategies in the face of highly variable conditions, in particular for risk management strategies (choice of crop varieties, sowing and harvest periods, prevention of pests and diseases, efficient use of irrigation water etc.). This leads us to advocate an original use of Information and Communication Technologies (ICT). We believe our demand-driven approach for the design of appropriate ICT tools that are targeted at the resource-poor to be relatively new. In order to go beyond a pure technocratic approach, we adopted an iterative, participatory methodology.
Resumo:
Ultrafine powders of extra pure Ti1−xSnxO2, where o < x < 1, prepared by the hydrothermal method are pale yellow in color. They show photocatalytic activity after platinization, in the visible light (420–550 nm) for H2-production from aqueous solutions containing sacrificial donors such as hypophosphite. The spectral sensitization is shown to be due to peroxotitanium species in the rutile-type structure. Peroxide ion, O22−, arises from the dimerization of O−, the hole centres, produced during the disproportionative decomposition of residual hydroxyls: OH− = O− + H. Higher OH contents in TixSnxO2 is due to the amphoteric chemistry of oxocompounds of tin.
Resumo:
We observe a surprisingly sharp increase in the pair hydrophobicity in the water climethylsulfoxide (DMSO) binary mixture at small DMSO concentrations, with the mole fraction of DMSO (x(D)) in the range 0.12-0.16. The increase in pair hydrophobicity is measured by an increase in the depth of the first minimum in the potential of mean force (PMF) between two methane molecules. However, this enhanced hydrophobicity again weakens at higher DMSO concentrations. We find markedly unusual behavior of the pure binary mixture (in the same composition range) in the diffusion coefficient of DMSO and in the local composition fluctuation of water, We find that, in the said composition range, the average coordination number of the methyl groups (of distinct DMSO) varies between 2.4 and 2.6, indicating the onset of the formation of a chain-like extended connectivity in an otherwise stable tetrahedral network comprising of water and DMSO molecules. We propose that the enhanced pair hydrophobicity of the binary mixture at low DMSO concentrations is due to the participation of the two methane molecules in the local structural order and the emerging molecular associations in the water-DMSO mixture.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
Resumo:
DNA three-way junctions (TWJs) are important intermediates in various cellular processes and are the simplest of a family of branched nucleic acids being considered as scaffolds for biomolecular nanotechnology. Branched nucleic acids are stabilized by divalent cations such as Mg2+, presumably due to condensation and neutralization of the negatively charged DNA backbone. However, electrostatic screening effects point to more complex solvation dynamics and a large role of interfacial waters in thermodynamic stability. Here, we report extensive computer simulations in explicit water and salt on a model TWJ and use free energy calculations to quantify the role of ionic character and strength on stability. We find that enthalpic stabilization of the first and second hydration shells by Mg2+ accounts for 1/3 and all of the free energy gain in 50% and pure MgCl2 solutions, respectively. The more distorted DNA molecule is actually destabilized in pure MgCl2 compared to pure NaCl. Notably, the first shell, interfacial waters have very low translational and rotational entropy (i.e., mobility) compared to the bulk, an entropic loss that is overcompensated by increased enthalpy from additional electrostatic interactions with Mg2+. In contrast, the second hydration shell has anomalously high entropy as it is trapped between an immobile and bulklike layer. The nonmonotonic entropic signature and long-range perturbations of the hydration shells to Mg2+ may have implications in the molecular recognition of these motifs. For example, we find that low salt stabilizes the parallel configuration of the three-way junction, whereas at normal salt we find antiparallel configurations deduced from the NMR. We use the 2PT analysis to follow the thermodynamics of this transition and find that the free energy barrier is dominated by entropic effects that result from the decreased surface area of the antiparallel form which has a smaller number of low entropy waters in the first monolayer.