994 resultados para PRUSSIAN BLUE NANOTUBES
Resumo:
The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube.
Resumo:
In recent times considerable research attention has been directed to understanding dark networks, especially criminal and terrorist networks. Dark networks are those in which member motivations are self rather than public interested, achievements come at the cost of other individuals, groups or societies and, in addition, their activities are both ‘covert and illegal’ (Raab & Milward, 2003: 415). This ‘darkness’ has implications for the way in which these networks are structured, the strategies adopted and their recruitment methods. Such entities exhibit distinctive operating characteristics including most notably the tension between creating an efficient network structure while retaining the ability to hide from public view while avoiding catastrophic collapse should one member cooperate with authorities (Bouchard 2007). While theoretical emphasis has been on criminal and terrorist networks, recent work has demonstrated that corrupt police networks exhibit some distinctive characteristics. In particular, these entities operate within the shadows of a host organisation - the Police Force and distort the functioning of the ‘Thin Blue Line’ as the interface between the law abiding citizenry and the criminal society. Drawing on data derived from the Queensland Fitzgerald Commission of Enquiry into Police Misconduct and related documents, this paper examines the motivations, structural properties and operational practices of corrupt police networks and compares and contrasts these with other dark networks with ‘bright’ public service networks. The paper confirms the structural differences between dark corrupt police networks and bright networks and suggests. However, structural embeddedness alone is found to be an insufficient theoretical explanation for member involvement in networks and that a set of elements combine to impact decision-making. Although offering important insights into network participation, the paper’s findings are especially pertinent in identifying additional points of intervention for police corruption networks.
Resumo:
This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV–Vis and Raman), we show how the polymer’s higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT p-p stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.
Resumo:
Under an Australian Research Council Linkage Grant, the partnering research organisations QUT, Creative Media Warehouse, The Brisbane Festival and The Queensland Orchestra undertook extensive reviews of many aspects of traditional and contemporary arts practice. We will publish excerpts from the findings soon. deepblue is committed to ongoing research as a part of the day to day operation and is currently working in partnership with John Kotzas and the team at QPAC on exploring new techniques for presenting and marketing deep blue.
Resumo:
Carbon nanotubes (CNTs), experimentally observed for the first time twenty years ago, have triggered an unprecedented research effort, on the account of their astonishing structural, mechanical and electronic properties. Unfortunately, the current inability in predicting the CNTs’ properties and the difficulty in controlling their position on a substrate are often limiting factors for the application of this material in actual devices. This research aims at the creation of specific methodologies for controlled synthesis of CNTs, leading to effectively employ them in various fields of electronics, e.g. photovoltaics. Focused Ion Beam (FIB) patterning of Si surfaces is here proposed as a means for ordering the assembly of vertical-aligned CNTs. With this technique, substrates with specific nano-structured morphologies have been prepared, enabling a high degree of control over CNTs’ position and size. On these nano-structured substrates, the growth of CNTs has been realized by chemical vapor deposition (CVD), i.e. thermal decomposition of hydrocarbon gases over a heated catalyst. The most common materials used as catalysts in CVD are transition metals like Fe and Ni; however, their presence in the CNT products often results in shortcomings for electronic applications, especially for those based on silicon, being the metallic impurities incompatible with very-large-scale integration (VLSI) technology. In the present work the role of Ge dots as an alternative catalysts for CNTs synthesis on Si substrates has been thoroughly assessed, finding a close connection between the catalytic activity of such material and the CVD conditions, which can affect both size and morphology of the dots. Successful CNT growths from Ge dots have been obtained by CVD at temperatures ranging from 750 to 1000°C, with mixtures of acetylene and hydrogen in an argon carrier gas. The morphology of the Si surface is observed to play a crucial role for the outcome of the CNT synthesis: natural (i.e. chemical etching) and artificial (i.e. FIB patterning, nanoindentation) means of altering this morphology in a controlled way have been then explored to optimize the CNTs yield. All the knowledge acquired in this study has been finally applied to synthesize CNTs on transparent conductive electrodes (indium-tin oxide, ITO, coated glasses), for the creation of a new class of anodes for organic photovoltaics. An accurate procedure has been established which guarantees a controlled inclusion of CNTs on ITO films, preserving their optical and electrical properties. By using this set of conditions, a CNTenhanced electrode has been built, contributing to improve the power conversion efficiency of polymeric solar cells.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
During nutrition intervention programs, some form of dietary assessment is usually necessary. This dietary assessment can be for: initial screening; development of appropriate programs and activities; or, evaluation. Established methods of dietary assessment are not always practical, nor cost effective in such interventions, therefore an abbreviated dietary assessment tool is needed. The Queensland Nutrition Project developed such a tool for male Blue Collar Workers, the Food Behaviour Questionnaire, consisting of 27 food behaviour related questions. This tool has been validated in a sample of 23 men, through full dietary assessment obtained via food frequency questionnaires and 24 hour dietary recalls. Those questions which correlated poorly with the full dietary assessment were deleted from the tool. In all, 13 questions was all that was required to distinguish between high and low dietary intakes of particular nutrients. Three questions when combined had correlations with refined sugar between 0.617 and 0.730 (p<0.005); four questions when combined had correlations with dietary fibre as percentage of energy of 0.45 (p<0.05); five questions when combined had a correlation with total fat of 0.499 (p<0.05); and, 4 questions when combined had a correlation with saturated fat of between 0.451 and 0.589 (p<0.05). A significant correlation could not be found for food behaviour questions with respect to dietary sodium. Correlations for fat as a function of energy could not be found.
Resumo:
In contextualising victims' experiences of policing in domestic violence situations in Singapore, two extreme but interrelated sets of responses have been observed. At one end of the continuum, criminal justice sanctions are strictly contingent upon victim willingness to initiate criminal proceedings against the perpetrator, and at the other, victims' rights, needs and preferences seem to be usurped by the justice system regardless of victims' choice. Neither of these positions takes victims' interests into account. Nor do they stem from an understanding of the sociocultural, economic and structural circumstances in which victims experienced violence, and continued to experience it, long after a police intervention. Data from the research revealed that criminalisation as an ideological and legally practical tool was not only rendered ineffective but irrelevant to the experiences of women in the Singaporean context.Two factors account for this phenomenon. First, the absence of support structures to achieve criminalisation and address victims' needs in the aftermath of criminalisation; second, the authoritative, paternalistic and patriarchal state impedes processes aimed at the empowerment of women victims.