967 resultados para PROJECTION OPTICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publicación bilingüe (Español e inglés)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publicación bilingüe (Español e inglés)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publicación bilingüe (Español e inglés)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publicación bilingüe (Español e inglés)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper presents a historical study on the acceptance of Newton's corpuscular theory of light in the early eighteenth century. Isaac Newton first published his famous book Opticks in 1704. After its publication, it became quite popular and was an almost mandatory presence in cultural life of Enlightenment societies. However, Newton's optics did not become popular only via his own words and hands, but also via public lectures and short books with scientific contents devoted to general public (including women) that emerged in the period as a sort of entertainment business. Lectures and writers stressed the inductivist approach to the study of nature and presented Newton's ideas about optics as they were consensual among natural philosophers in the period. The historical case study presented in this paper illustrates relevant aspects of nature of science, which can be explored by students of physics on undergraduate level or in physics teacher training programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of edge covalent functionalization on the structural, electronic, and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the framework of Hartree-Fock-based semiempirical methods. The chemical features of the functional groups, their distribution, and the resulting system symmetry are identified as the key factors that determine the modification of strutural and optoelectronic features. While the electronic gap is always reduced in the presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35-55% This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge-substituent bond are found to influence the strength and the character of the low-energy excitations. All of these effects are discussed for flakes of different widths, representing the three families of AGNFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The methods used for evaluating wound dimensions, especially the chronic ones, are invasive and inaccurate. The fringe projection technique with phase shift is a non-invasive, accurate and low-cost optical method. Objective: The aim is to validate the technique through the determination of dimensions of objects of known topography and with different geometries and colors to simulate the wounds and tones of skin color. Taking into account the influence of skin wound optical factors, the technique will be used to evaluate actual patients’ wound dimensions and to study its limitations in this application. Methods: Four sinusoidal fringe patterns, displaced ¼ of period each, were projected onto the objects surface. The object dimensions were obtained from the unwrapped phase map through the observation of the fringe deformations caused by the object topography and using phase shift analysis. An object with simple geometry was used for dimensional calibration and the topographic dimensions of the others were determined from it. After observing the compatibility with the data and validating the method, it was used for measuring the dimensions of real patients’ wounds. Results and Conclusions: The discrepancies between actual topography and dimensions determined with Fringe Projection Technique and for the known object were lower than 0.50 cm. The method was successful in obtaining the topography of real patient’s wounds. Objects and wounds with sharp topographies or causing shadow or reflection are difficult to be evaluated with this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The meaning of a place has been commonly assigned to the quality of having root (rootedness) or sense of belonging to that setting. While on the contrary, people are nowadays more concerned with the possibilities of free moving and networks of communication. So, the meaning, as well as the materiality of architecture has been dramatically altered with these forces. It is therefore of significance to explore and redefine the sense and the trend of architecture at the age of flow. In this dissertation, initially, we review the gradually changing concept of "place-non-place" and its underlying technological basis. Then we portray the transformation of meaning of architecture as influenced by media and information technology and advanced methods of mobility, in the dawn of 21st century. Against such backdrop, there is a need to sort and analyze architectural practices in response to the triplet of place-non-place and space of flow, which we plan to achieve conclusively. We also trace the concept of flow in the process of formation and transformation of old cities. As a brilliant case study, we look at Persian Bazaar from a socio-architectural point of view. In other word, based on Robert Putnam's theory of social capital, we link social context of the Bazaar with architectural configuration of cities. That is how we believe "cities as flow" are not necessarily a new paradigm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.