947 resultados para PROBABILISTIC FORECASTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we attempt to make a probabilistic analysis of some physically realizable, though complex, storage and queueing models. It is essentially a mathematical study of the stochastic processes underlying these models. Our aim is to have an improved understanding of the behaviour of such models, that may widen their applicability. Different inventory systems with randon1 lead times, vacation to the server, bulk demands, varying ordering levels, etc. are considered. Also we study some finite and infinite capacity queueing systems with bulk service and vacation to the server and obtain the transient solution in certain cases. Each chapter in the thesis is provided with self introduction and some important references

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we address the problem of face detection and recognition of grey scale frontal view images. We propose a face recognition system based on probabilistic neural networks (PNN) architecture. The system is implemented using voronoi/ delaunay tessellations and template matching. Images are segmented successfully into homogeneous regions by virtue of voronoi diagram properties. Face verification is achieved using matching scores computed by correlating edge gradients of reference images. The advantage of classification using PNN models is its short training time. The correlation based template matching guarantees good classification results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this paper we address the problem of face detection and recognition of grey scale frontal view images. We propose a face recognition system based on probabilistic neural networks (PNN) architecture. The system is implemented using voronoi/ delaunay tessellations and template matching. Images are segmented successfully into homogeneous regions by virtue of voronoi diagram properties. Face verification is achieved using matching scores computed by correlating edge gradients of reference images. The advantage of classification using PNN models is its short training time. The correlation based template matching guarantees good classification results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robots must act purposefully and successfully in an uncertain world. Sensory information is inaccurate or noisy, actions may have a range of effects, and the robot's environment is only partially and imprecisely modeled. This thesis introduces active randomization by a robot, both in selecting actions to execute and in focusing on sensory information to interpret, as a basic tool for overcoming uncertainty. An example of randomization is given by the strategy of shaking a bin containing a part in order to orient the part in a desired stable state with some high probability. Another example consists of first using reliable sensory information to bring two parts close together, then relying on short random motions to actually mate the two parts, once the part motions lie below the available sensing resolution. Further examples include tapping parts that are tightly wedged, twirling gears before trying to mesh them, and vibrating parts to facilitate a mating operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics