923 resultados para PRECIPITATE PHASES
Resumo:
The(1-x) BiFeO3-(x) PbTiO3 solid solution exhibiting a Morphotropic Phase Boundary (MPB) has attracted considerable attention recently because of its unique features such as multiferroic, high Curie point (T-C similar to 700 degrees C) and giant tetragonality (c/a -1 similar to 0.19). Different research groups have reported different composition range of MPB for this system. In this work we have conclusively proved that the wide composition range of MPB reported in the literature is due to kinetic arrest of the metastable rhombohedral phase and that if sufficient temperature and time is allowed the metastable phase disappears. The genuine MPB was found to be x=0.27 for which the tetragonal and the rhombohedral phases are in thermodynamic equilibrium. In-situ high temperature structural study of x=0.27 revealed the sluggish kinetics associated with the temperature induced structural transformation. Neutron powder diffraction study revealed that themagnetic ordering at room temperature occurs in the rhombohedral phase. The magnetic structure was found to be commensurate G-type antiferromagnetic with magnetic moments parallel to the c-direction (of the hexagonal cell). The present study suggests that the equilibrium properties in this solid solution series should be sought for x=0.27.
Resumo:
For decades it has been a well-known fact that among the few ferroelectric compounds in the perovskite family, namely, BaTiO3, KNbO3, PbTiO3, and Na1/2Bi1/2TiO3, the dielectric and piezoelectric properties of BaTiO3 are considerably higher than the others in polycrystalline form at room temperature. Further, similar to ferroelectric alloys exhibiting morphotropic phase boundary, single crystals of BaTiO3 exhibit anomalously large piezoelectric response when poled away from the direction of spontaneous polarization at room temperature. These anomalous features in BaTiO3 remained unexplained so far from the structural standpoint. In this work, we have used high-resolution synchrotron x-ray powder diffraction, atomic resolution aberration-corrected transmission electron microscopy, in conjunction with a powder poling technique, to reveal that at 300 K (i) the equilibrium state of BaTiO3 is characterized by coexistence of metastable monoclinic Pm and orthorhombic (Amm2) phases along with the tetragonal phase, and (ii) strong electric field switches the polarization direction from the 001] direction towards the 101] direction. These results suggest that BaTiO3 at room temperature is within an instability regime, and that this instability is the fundamental factor responsible for the anomalous dielectric and piezoelectric properties of BaTiO3 as compared to the other homologous ferroelectric perovskite compounds at room temperature. Pure BaTiO3 at room temperature is therefore more akin to lead-based ferroelectric alloys close to the morphotropic phase boundary where polarization rotation and field induced ferroelectric-ferroelectric phase transformations play a fundamental role in influencing the dielectric and piezoelectric behavior.
Resumo:
In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 +/- 35.01 nm, 555.74 +/- 19.93 nm, and 1620.24 +/- 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.
Resumo:
Thin films of conducting palladium selenide phases (Pd17Se15 and Pd7Se4) are prepared using a single source molecular precursor by thermolysis. Varying the mole ratios of palladium and selenium precursors results in palladium organo-selenolate complexes which on thermolysis at different temperatures yield Pd17Se15 and Pd7Se4 phases that are very stable and adherent to the substrate. The organo-selenolate complexes are characterized using small angle XRD, Se-77 NMR and thermogravimetric analysis (TGA). The palladium selenide films are characterized by various techniques such as XRD, XPS, TEM and SEM. Electrical conductivities of the films are determined using the four probe method. The strong adherence of the films to glass substrates coupled with high corrosion resistant behavior towards strong acid and alkaline environments render them to be very effective as electrocatalysts. The catalytic activity towards the I-3(-)/I- redox couple, which is an important reaction in the regeneration of the dye in a dye-sensitized solar cell, is studied. Between the two phases, the Pd17Se15 film shows superior activity as the counter electrode for dye sensitized solar cells with a photocurrent conversion efficiency of 7.45%.
Resumo:
Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (L-alpha) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the L-alpha phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the L-alpha phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.
Resumo:
Electrically conducting, continuous films of different phases of palladium selenides are synthesized by the thermolysis of single source molecular precursors. The films are found to be adherent on flat substrates such as glass, indium tin oxide and glassy carbon and are stable under electrochemical conditions. They are electrocatalytically active and in particular, for hydrogen evolution reaction. Catalytic activities with low Tafel slopes of 50-60 mV per decade are observed.
Resumo:
A strong influence of Ni content on the diffusion-controlled growth of the (Cu,Ni)(3)Sn and (Cu,Ni)(6)Sn-5 phases by coupling different Cu(Ni) alloys with Sn in the solid state is reported. The continuous increase in the thickness ratio of (Cu,Ni)(6)Sn-5 to (Cu,Ni)(3)Sn with the Ni content is explained by combined kinetic and thermodynamic arguments as follows: (i) The integrated interdiffusion coefficient does not change for the (Cu,Ni)(3)Sn phase up to 2.5 at.% Ni and decreases drastically for 5 at.% Ni. On the other hand, there is a continuous increase in the integrated interdiffusion coefficient for (Cu,Ni)(6)Sn-5 as a function of increasing Ni content. (ii) With the increase in Ni content, driving forces for the diffusion of components increase for both components in both phases but at different rates. However, the magnitude of these changes alone is not large enough to explain the high difference in the observed growth rate of the product phases because of Ni addition. (iv) Kirkendall marker experiments indicate that the Cu6Sn5 phase grows by diffusion of both Cu and Sn in the binary case. However, when Ni is added, the growth is by diffusion of Sn only. (v) Also, the observed grain refinement in the Cu6Sn5 phase with the addition of Ni suggests that the grain boundary diffusion of Sn may have an important role in the observed changes in the growth rate.
Resumo:
We report the remarkable phase separation behavior in La0.67Sr0.33MnO3 doped with Bi3+ ion at La site. The temperature dependent resistivity and magnetization of La0.67-xBixSr0.33MnO3 (x>0) show the presence of phase separation of ferromagnetic metallic and charge ordered antiferromagnetic insulating phases. Markedly, the field dependant magnetization studies of La0.67-xBixSr0.33MnO3 (x=0.3) show the metamagnetic nature of ferromagnetic metallic state implying the competition of coexisting ferromagnetic metallic and charge ordered antiferromagnetic phases. The electron spin resonance and exchange bias studies of La0.67-xBixSr0.33MnO3 (x=0.4 and 0.5) substantiate the coexistence of ferromagnetic clusters in antiferromagnetic matrix. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The phase diagram of the dodecyl dimethyl ammonium hydroxyl propyl sulfonate(DDAHPS)/1-pentanol(C5H11OH)/water ternary system has been established. It contains two isotropic monophase regions (L-1 and L-2) and a liquid crystalline region (L.C.). The isotropic phase regions have been investigated by means of Raman spectroscopy and conductivity.