409 resultados para PRECIPITATE
Resumo:
Origins of H_2S, thiols, thiophenes in natural gases and sulphur-enriched oils are complicated and thus some debates exist on them. The post-doctoral research is based upon oil- and gas-field data. Cases for study include Triassic Jianglingjiang Formation natural gases, Wolonghe Field, Sichuan Basin, Paleozoic oils and bitumen, Central Tarim, gases reserviored nearby Carboniferious - Ordovician unconformity, Hetianhe Field, Tarim Basin and sulphur-enriched oils in Tertiary reserviors in Jinxian Sag, Bohai Bay Basin. We have carried out analyses on the oils and gases for chemistry, δ~(13)C, δ~(34)S, and molecular composition of biomarkers, analyzed authigenetic pyrite forδ~(34)S, formation water for chemistry and δD and δ~(18)O along with petroleum system and burial history analyses, The aims are to assess the origins of the H2S and authigenetic pyrite, to discuss the possibility of reduced sulphur incorporation into hydrocarbons and to determine the mechanisms of hydrocarbon secondary alteration in the above four cases by comparison. The research shows that the reduced sulphur in the four cases is the result of thermochemical and biological sulphate reduction., TSR and BSR, respectively. No evidence indicates an origin of decomposition of organic matter or mantle - derived H2S in the cases. Elevated H_2S contents (up to 32%) in the Triassic Jialingjiang Formation are considered to result from TSR while relatively low H_2S (up to 2000ppm) in the Hetianhe Field resulted from BSR. However, it is not the case for the Central Tarim where relatively low H2S but abundant authigenetic pyrite occurr. Part of the H_2S in the Central Tarim reservoirs has reacted with iron released from clay minerals to precipitate pyrite. Thus, reduced sulphur δ~(34)S and reservoir temperatures rather than the H2S amount are reliable parameters to distinguish between TSR and BSR. TSR in Sichuan Basin Triassic Jialingjiang Formation and Central Tarim Paleozoic reservoirs are showed to take place at more than 125℃. the H2S and authigenetic pyrite have δ~(34)S close to parent anhydrite. In contrast, BSR in the reservoirs near the Carboniferous - Ordovician unconformity in the Hetianhe Field and in the Tertiary in the Jinxian Sag took place at temperatures less than 80℃with sulphide δ~(34)S as light as -24.9‰ and -12.5‰, anhydrite δ~(34)S as heavy as +26‰and +3 5-+40‰, respectively. Chemistry and isotopic composition of the natural gases change as the result of sulphate reduction. It has been observed that relative composition of light hydrocarbon gases is changed along with a rise in H_2S and CO_2. TSR in the Triassic Jialingjiang Formation and BSR in the Hetianhe Field result in a greater degree of preferential depletion of methane than larger molecular hydrocarbon gases. As TSR or BSR proceeds, hydrocarbon gases evolved to heavier carbon isotope as the result of kinetic isotopic fractionation, i.e., selective anaerobic oxidation of ~(12)C. Using the model of residual methane (Whiticar, 1999) to describe the relationship among the proportion of methane oxidation, isotopic shift and fraction factor, about 30% methane is calculated to have been oxidized during BSR in the western part of the Hetianhe Field. From the above, it can be concluded that in the area where H_2S is abundant, empiricalδ~(13)C -Ro relationships do not work. Sulphate reduction results in a rise in sulphur content, gravity and viscosity of an oil as well as changes in δ~(13)C and δ~(34)S. On special conditions, the reduced sulphur from sulphates might be incorporated into oils, i.e., the increasing sulphur is derived from secondarily reduced sulphur. A positive correlative relationship exists between sulphur content and δ~(34)S in the oils in Paleozoic reservoirs in Central Tarim, indicating that enhanced sulphur is ~(34)S-enriched, originated from TSR. The Jinxian oil with the highest sulphur content has the lightest δ~(34)S, suggesting part of the sulphur in the oil is ~(34)S-depleted, originated from BSR. In the Jinxian oil with increasing sulphur content, asphaltenes shows higher content and more negative δ~(13)C, and saturates shows evidence of biodegradetion and a decreasing content and a positive δ~(13)C shift. Thus, asphaltenes have δ~(13)C values closer to saturates. All the above indicate that the reduced sulphur has been incorporated into biodegradated saturates to generate new asphaltenes with relatively light δ~(13)C of saturates. Thiols and thiophenes in natural gases in the Triassic Jialingjiang Formation may result from reaction of H_2S with hydrocarbon. In the Jialingjiang Formation hydrocarbon gases are dominated by methane thus have a high dryness coefficient and thiols are showed to be positively related to H_2S content, suggesting that the thiols may result from H_2S reaction with short chain hydrocarbons. In contrast, high thiophenes occur in wet gases in Jurassic reservoirs with their source rock from sulphur - depleted type I kerogen, indicating that thiophenes may be a product of reaction of H2S with longer chain hydrocarbons.
Resumo:
The epoxidation of styrene catalyzed by a reaction-controlled phase transfer catalyst [(C18H37(30%)+C16H33(70%))N(CH3)(3))(3)](3)-[PW4O16] with H2O2 in a biphasic medium was investigated. Under certain conditions, the selectivity for styrene oxide was 95%, the conversion of styrene based on H2O2 was 85%, and the reaction time was less than 1 h. During the reaction, this catalyst powder formed soluble active species by the action of H2O2, was recovered as a precipitate, and was reused after H2O2 was used up. After two times recycling, the catalyst kept almost the same activity.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Selective isoelectric whey protein precipitation and aggregation is carried out at laboratory scale in a standard configuration batch agitation vessel. Geometric scale-up of this operation is implemented on the basis of constant impeller power input per unit volume and subsequent clarification is achieved by high speed disc-stack centrifugation. Particle size and fractal geometry are important in achieving efficient separation while aggregates need to be strong enough to resist the more extreme levels of shear that are encountered during processing, for example through pumps, valves and at the centrifuge inlet zone. This study investigates how impeller agitation intensity and ageing time affect aggregate size, strength, fractal dimension and hindered settling rate at laboratory scale in order to determine conditions conducive for improved separation. Particle strength is measured by observing the effects of subjecting aggregates to moderate and high levels of process shear in a capillary rig and through a partially open ball-valve respectively. The protein precipitate yield is also investigated with respect to ageing time and impeller agitation intensity. A pilot scale study is undertaken to investigate scale-up and how agitation vessel shear affects centrifugal separation efficiency. Laboratory scale studies show that precipitates subject to higher impeller shear-rates during the addition of the precipitation agent are smaller but more compact than those subject to lower impeller agitation and are better able to resist turbulent breakage. They are thus more likely to provide a better feed for more efficient centrifugal separation. Protein precipitation yield improves significantly with ageing, and 50 minutes of ageing is required to obtain a 70 - 80% yield of α-lactalbumin. Geometric scale-up of the agitation vessel at constant power per unit volume results in aggregates of broadly similar size exhibiting similar trends but with some differences due to the absence of dynamic similarity due to longer circulation time and higher tip speed in the larger vessel. Disc stack centrifuge clarification efficiency curves show aggregates formed at higher shear-rates separate more efficiently, in accordance with laboratory scale projections. Exposure of aggregates to highly turbulent conditions, even for short exposure times, can lead to a large reduction in particle size. Thus, improving separation efficiencies can be achieved by the identification of high shear zones in a centrifugal process and the subsequent elimination or amelioration of such.
Resumo:
The dissolution of thin film under-bump-metallization (UBM) by molten solder has been one of the most serious processing problems in electronic packaging technology. Due to a higher melting temperature and a greater Sn content, a molten lead-free solder such as eutectic SnAg has a faster dissolution rate of thin film UBM than the eutectic SnPb. The work presented in this paper focuses on the role of 0.5 wt % Cu in the base Sn–3.5%Ag solder to reduce the dissolution of the Cu bond pad in ball grid array applications. We found that after 0.5 wt % Cu addition, the rate of dissolution of Cu in the molten Sn–3.5%Ag solder slows down dramatically. Systematic experimental work was carried out to understand the dissolution behavior of Cu by the molten Sn–3.5%Ag and Sn–3.5%Ag–0.5%Cu solders at 230–250 °C, for different time periods ranging from 1 to 10 min. From the curves of consumed Cu thickness, it was concluded that 0.5 wt % Cu addition actually reduces the concentration gradient at the Cu metallization/molten solder interface which reduces the driving force of dissolution. During the dissolution, excess Cu was found to precipitate out due to heterogeneous nucleation and growth of Cu6Sn5 at the solder melt/oxide interface. In turn, more Cu can be dissolved again. This process continues with time and leads to more dissolution of Cu from the bond pad than the amount expected from the solubility limit, but it occurs at a slower rate for the molten Sn–3.5%Ag–0.5%Cu solder. © 2003 American Institute of Physics.
Resumo:
Lime is a preferred precipitant for the removal of heavy metals from industrial wastewater due to its relatively low cost. To reduce heavy metal concentration to an acceptable level for discharge, in this work, fly ash was added as a seed material to enhance lime precipitation and the suspension was exposed to CO2 gas. The fly ash-lime-carbonation treatment increased the particle size of the precipitate and significantly improved sedimentation of sludge and the efficiency of heavy metal removal. The residual concentrations of chromium, copper, lead and zinc in effluents can be reduced to (mg L-1) 0.08, 0.14, 0.03 and 0.45, respectively. Examination of the precipitates by XRD and thermal analysis techniques showed that calcium-heavy metal double hydroxides and carbonates were present. The precipitate agglomerated and hardened naturally, facilitating disposal without the need for additional solidification/stabilization measures prior to landfill. It is suggested that fly ash, lime and CO2, captured directly from flue gas, may have potential as a method for wastewater treatment. This method could allow the ex-situ sequestration of CO2, particularly where flue-gas derived CO2 is available near wastewater treatment facilities. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Warming of the global climate is now unequivocal and its impact on Earth’ functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.
Resumo:
The rising number of people with cognitive impairment is placing health care budgets under significant strain. Dementia related behavioural change is a major independent risk factor for admission to expensive institutional care, and aggressive symptoms in particular are poorly tolerated by carers and frequently precipitate the collapse of home coping strategies. Aggressive change may result from known genetic risk factors for Alzheimer's disease (AD) and therefore accompany conventional markers such as apolipoprotein E (ApoE). We tested this hypothesis in 400 moderately to severely affected AD patients who were phenotyped for the presence of aggressive or agitated behaviour during the month prior to interview using the Neuropsychiatric Inventory with Caregiver Distress. The proportion of subjects with aggression/agitation in the month prior to interview was 51.8%. A significantly higher frequency of the e4 allele was found in individuals recording aggression/agitation in the month prior to interview (chi2 = 6.69, df = 2, p = 0.03). The additional risk for aggression/agitation conferred by e4 was also noted when e4 genotypes were compared against non-e4 genotypes (chi2 = 5.45, df = 1, p = 0.02, OR = 1.60, confidence interval (CI) 1.06 to 2.43). These results indicate that advanced Alzheimer's disease patients are at greater risk of aggressive symptoms because of a genetic weakness in apolipoprotein E.
Resumo:
We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.
Resumo:
Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.
Resumo:
The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis-(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production Of UO2, or a complex containing UO2. Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.
Resumo:
Research on the kinetics of precipitate formation and austenite reversion in maraging steels has received great attention due to their importance to steel properties. Judging from the literature in recent years, research into maraging steels has been very active, mainly extending to new types of steels, for new applications beyond the traditional strength requirements. This chapter provides an in-depth overview of the literature in this area. In addition, the kinetics of precipitate formation are analysed using the Johnson–Mehl–Avrami (JMA) theory.
Resumo:
A major goal in vaccine development is elimination of the ‘cold chain’, the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 oC, but not when stored at 40 oC / 75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 oC / 75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation as compared to the original formulation when stored at 40 oC /75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general.
Resumo:
The anionic speciation of chlorostannate(II) ionic liquids, prepared by mixing 1-alkyl-3-methylimidazolium chloride and tin(II) chloride in various molar ratios, chi(SnCl2), was investigated in both solid and liquid states. The room temperature ionic liquids were investigated by Sn-119 NMR spectroscopy, X-ray photoelectron spectroscopy, and viscometry. Crystalline samples were studied using Raman spectroscopy, single-crystal X-ray crystallography, and differential scanning calorimetry. Both liquid and solid systems (crystallized from the melt) contained [SnCl3](-) in equilibrium with Cl- when chi(SnCl2) < 0.50, [SnCl3](-) in equilibrium with [Sn2Cl5](-) when chi(SnCl2) > 0.50, and only [SnCl3](-) when chi(SnCl2) = 0.50. Tin(II) chloride was found to precipitate when chi(SnCl2) > 0.63. No evidence was detected for the existence of [SnCl4](-) across the entire range of chi(SnCl2) although such anions have been reported in the literature for chlorostannate(II) organic salts crystallized from organic solvents. Furthermore, the Lewis acidity of the chlorostannate(II)-based systems, expressed by their Gutmann acceptor number, has been determined as a function of the composition, chi(SnCl2), to reveal Lewis acidity for chi(SnCl2) > 0.50 samples comparable to the analogous systems based on zinc(II). A change of the Lewis basicity of the anion was estimated using H-1 NMR spectroscopy, by comparison of the measured chemical shifts of the C-2 hydrogen in the imidazolium ring. Finally, compositions containing free chloride anions (chi(SnCl2) < 0.50) were found to oxidize slowly in air to form a chlorostannate(IV) ionic liquid containing the [SnCl6](2-) anion.
Resumo:
Androgen withdrawal induces hypoxia in androgen-sensitive tissue; this is important as in the tumour microenvironment hypoxia is known to drive malignant progression. This study examined the time-dependent effect of androgen deprivation therapy (ADT) on tumour oxygenation and investigated the role of ADT-induced hypoxia on malignant progression in prostate tumours. LNCaP xenografted tumours were treated with anti-androgens and tumour oxygenation measured. Dorsal skin fold chambers (DSF) were used to image tumour vasculature in vivo. Quantitative PCR (QPCR) identified differential gene expression following treatment with bicalutamide. Bicalutamide and vehicle-only treated tumours were re-established in vitro and invasion and sensitivity to docetaxel were measured. Tumour growth delay was calculated following treatment with bicalutamide combined with the bioreductive drug AQ4N. Tumour oxygenation measurements showed a precipitate decrease following initiation of ADT. A clinically relevant dose of bicalutamide (2mg/kg/day) decreased tumour oxygenation by 45% within 24h, reaching a nadir of 0.09% oxygen (0.67±0.06 mmHg) by day 7; this persisted until day 14 when it increased up to day 28. Using DSF chambers, LNCaP tumours treated with bicalutamide showed loss of small vessels at days 7 and 14 with revascularization occurring by day 21. QPCR showed changes in gene expression consistent with the vascular changes and malignant progression. Cells from bicalutamide-treated tumours were more malignant than vehicle-treated controls. Combining bicalutamide with AQ4N (50mg/kg; single dose) caused greater tumour growth delay than bicalutamide alone. This study shows that bicalutamide-induced hypoxia selects for cells that show malignant progression; targeting hypoxic cells may provide greater clinical benefit.