488 resultados para PPAR-


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaque année, la grippe provoque des centaines de milliers de décès dans le monde. Dans le cas d’infections sévères, il a été démontré que la génération excessive de molécules inflammatoires telles que les cytokines et les chimiokines, la sécrétion d’espèces réactives dérivées de l'oxygène ainsi que l’afflux massif de cellules immunitaires innées et adaptatives dans les voies respiratoires contribuent à la génération de dommages pulmonaires aigus et contribuent à l'immunopathologie reliée à l’infection. Tenant compte de ce fait, le défi actuel dans le traitement de la grippe est de contrôler la réponse inflammatoire tout en inhibant la réplication virale afin de permettre à l'organisme de se défendre contre les infections sévères à l'influenza. Des études récentes ont montré que l’activation du récepteur nucléaire PPARγ par ses ligands, tel que la 15d-PGJ[indice inférieur 2], diminuait l’inflammation pulmonaire et améliorait la survie des souris infectées avec des doses létales du virus influenza. Mis à part ses effets sur PPARγ, le ligand 15d-PGJ[indice inférieur 2] est aussi connu pour activer le facteur nucléaire antioxydant Nrf2. Il a été montré que Nrf2 réduit la réplication du virus influenza. Cependant, son mode d'action dans cette fonction nécessite une clarification. De manière intéressante, une étude a montré que Nrf2 réduit l’inflammation pulmonaire en régulant l’expression de PPARγ et ceci dans un modèle murin du syndrome de détresse respiratoire aigu. Les résultats de ces études précédentes mènent à l’hypothèse que les voies de PPARγ et Nrf2 interagissent fonctionnellement et qu'elles sont impliquées dans la réduction de l’inflammation induite lors d'infections sévères causées par l'influenza. L’objectif général de cette étude est donc de mieux comprendre les mécanismes protecteurs de PPARγ et Nrf2 dans la régulation de l’inflammation et la réplication virale suite à une infection par le virus influenza. Nos résultats ont démontré premièrement que le fait de cibler les deux voies moléculaires PPARγ et Nrf2, permet une inhibition significative de l’inflammation et de la morbidité liée à l’infection. Dans un deuxième temps, nos résultats dévoilent le mécanisme antiviral de Nrf2 et démontrent que l’activation de cette voie réduit la réplication du virus influenza d’une façon dépendante de l’expression de l’antiprotéase SLPI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mushrooms have been object of intense research in view of its potential raising of application in different sectors of the pharmacology and alimentary industry. Among diverse bioactive composites of polyssacharides nature that exist in the fungus the glucans are much searched. These are polymers of glucose and classified as the type of glicosidic linking [α, β]. Peroxisome proliferator-activated receptors (PPARs), ranscription factors belonging to the family of nuclear receptors that bind themselves o specific agonists, have shown their importance in controlling the inflammatory process. The aim of this study was to perform a chemical characterization of extract rom the mushroom Caripia montagnei, assess its antiinflammatory and antibacterial effect and determine if this effect occurs via PPAR. This mushroom is composed of carbohydrates (63.3±4.1%), lipids (21.4l±0.9%) and proteins (2.2± 0.3%). The aqueous solution resulting from the fractionation contained carbohydrates (98.7±3.3%) and protein (1.3±0.25%). Analyses of infrared spectrophotometry and of nuclear magnetic esonance demonstrated that the extract of mushroom C. montagnei is rich in β-glucans. In hioglycolate-induced peritonitis, the C. montagnei glucans (50 mg/kg) educed the inflammatory process in 65.5±5.2% and agonists, pharmacological igands, for PPAR: Wy-14643 (49.3±6.1%), PFOA (48.9±3.8%) and clofibrate in 45.2±3.2%. Sodium diclofenac showed a reduction of 81.65±0.6%. In the plantar edema, the glucans from C. montagnei (50 mg/kg) and L-NAME reduced the edema to a similar degree 91.4±0.3% and 92.8±0,5 %, respectively. In all the groups tested, nitric oxide (NO), an inflammation mediator, showed a significant reduction in the nitrate/nitrite levels when compared to the positive control (P<0.001). The C. montagnei glucans did not show cytotoxicity in the concentrations tested (2.5, 5.0, 10.0, 20.0 and 40.0 µg/100 µL). Antibacterial activity demonstrated that, unlike total extract, there was no inhibition of bacterial growth. The C. montagnei glucans show great potential for antiinflammatory applications. This effect suggests that it is mediated by PPAR activation and by COX and iNOS inhibition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PPARα ligands evoke a profound mitogenic response in rodent liver, and the aim of this study was to characterise the kinetics of induction of DNA synthesis. The CAR ligand, 1,4-bis[2-(3,5- dichoropyridyloxy)]benzene, caused induction of hepatocyte DNA synthesis within 48 hours in 129S4/SvJae mice, but the potent PPARα ligand, ciprofibrate, induced hepatocyte DNA synthesis only after 3 or 4 days dosing; higher or lower doses did not hasten the DNA synthesis response. This contrasted with the rapid induction (24 hours) reported by Styles et al. (Carcinogenesis 9:1647-1655). C57BL/6 and DBA/2J mice showed significant induction of DNA synthesis after 4, but not 2, days ciprofibrate treatment. Alderley Park and 129S4/SvJae mice dosed with methylclofenapate induced hepatocyte DNA synthesis at 4, but not 2, days after dosing, and proved that inconsistency with prior work was not due to a difference in mouse strain or PPARα ligand. Ciprofibrate-induced liver DNA synthesis and growth was absent in PPARα- null mice, and are PPARα-dependent. In the Fisher344 rat, hepatocyte DNA synthesis was induced at 24 hours after dosing, with a second peak at 48 hours. Lobular localisation of hepatocyte DNA synthesis showed preferential periportal induction of DNA synthesis in rat, but panlobular zonation of hepatocyte DNA synthesis in mouse. These results characterise a markedly later hepatic induction of panlobular DNA synthesis by PPARα ligands in mouse, compared to rapid induction of periportal DNA synthesis in rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Molecular, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mushrooms have been object of intense research in view of its potential raising of application in different sectors of the pharmacology and alimentary industry. Among diverse bioactive composites of polyssacharides nature that exist in the fungus the glucans are much searched. These are polymers of glucose and classified as the type of glicosidic linking [α, β]. Peroxisome proliferator-activated receptors (PPARs), ranscription factors belonging to the family of nuclear receptors that bind themselves o specific agonists, have shown their importance in controlling the inflammatory process. The aim of this study was to perform a chemical characterization of extract rom the mushroom Caripia montagnei, assess its antiinflammatory and antibacterial effect and determine if this effect occurs via PPAR. This mushroom is composed of carbohydrates (63.3±4.1%), lipids (21.4l±0.9%) and proteins (2.2± 0.3%). The aqueous solution resulting from the fractionation contained carbohydrates (98.7±3.3%) and protein (1.3±0.25%). Analyses of infrared spectrophotometry and of nuclear magnetic esonance demonstrated that the extract of mushroom C. montagnei is rich in β-glucans. In hioglycolate-induced peritonitis, the C. montagnei glucans (50 mg/kg) educed the inflammatory process in 65.5±5.2% and agonists, pharmacological igands, for PPAR: Wy-14643 (49.3±6.1%), PFOA (48.9±3.8%) and clofibrate in 45.2±3.2%. Sodium diclofenac showed a reduction of 81.65±0.6%. In the plantar edema, the glucans from C. montagnei (50 mg/kg) and L-NAME reduced the edema to a similar degree 91.4±0.3% and 92.8±0,5 %, respectively. In all the groups tested, nitric oxide (NO), an inflammation mediator, showed a significant reduction in the nitrate/nitrite levels when compared to the positive control (P<0.001). The C. montagnei glucans did not show cytotoxicity in the concentrations tested (2.5, 5.0, 10.0, 20.0 and 40.0 µg/100 µL). Antibacterial activity demonstrated that, unlike total extract, there was no inhibition of bacterial growth. The C. montagnei glucans show great potential for antiinflammatory applications. This effect suggests that it is mediated by PPAR activation and by COX and iNOS inhibition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O ácido graxo (AG) é uma importante fonte de energia para o músculo esquelético. Durante o exercício sua mobilização é aumentada para suprir as necessidades da musculatura ativa. Acredita-se que diversos pontos de regulação atuem no controle da oxidação dos AG, sendo o principal a atividade do complexo carnitina palmitoil transferase (CPT), entre os quais três componentes estão envolvidos: a CPT I, a CPT II e carnitina acilcarnitina translocase. A função da CPT I durante o exercício físico é controlar a entrada de AG para o interior da mitocôndria, para posterior oxidação do AG e produção de energia. Em resposta ao treinamento físico há um aumento na atividade e expressão da CPT I no músculo esquelético. Devido sua grande importância no metabolismo de lipídios, os mecanismos que controlam sua atividade e sua expressão gênica são revisados no presente estudo. Reguladores da expressão gênica de proteínas envolvidas no metabolismo de lipídios no músculo esquelético, os receptores ativados por proliferadores de peroxissomas (PPAR) alfa e beta, são discutidos com um enfoque na resposta ao treinamento físico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A obesidade é um dos principais problemas de saúde pública. Indivíduos obesos são mais suscetíveis a desenvolver doenças cardiovasculares e diabetes melito tipo 2. A obesidade resulta do aumento no tamanho e no número de adipócitos. O balanço entre adipogênese e adiposidade determina o grau de obesidade do indivíduo. Adipócitos maduros secretam adipocinas, tais como TNFα, IL-6, leptina e adiponectina, e lipocina, o ácido palmitoleico ω-7. A produção de adipocinas é maior na obesidade, o que contribui para o estabelecimento de resistência periférica à insulina. O conhecimento dos eventos moleculares que regulam a diferenciação dos pré-adipócitos e de células-tronco mesenquimais em adipócitos (adipogênese) é importante para o entendimento da gênese da obesidade. A ativação do fator de transcrição PPARγ é essencial na adipogênese. Certos ácidos graxos são ligantes de PPARγ e podem, assim, controlar a adipogênese. Além disso, alguns ácidos graxos atuam como moléculas sinalizadoras em adipócitos, regulando sua diferenciação ou morte. Dessa forma, a composição lipídica da dieta e os agonistas de PPARγ podem regular o balanço entre adipogênese e morte de adipócitos e, portanto, a obesidade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Leukotriene B(4) (LTB(4)) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB(4) released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB(4)-loaded MS. Results: In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB(4)-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB(4)-loaded MS also increase peroxisome proliferator-activated receptor-alpha (PPAR alpha) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-I (MCP-I) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB(4)-loaded MS. Conclusion: LTB(4)-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Modified low-density lipoprotein (mLDL), mainly upon oxidative and enzymatic modification, is the major atherogenic lipoprotein. Conversely, high-density lipoprotein (HDL) is considered anti-atherogenic because of its ability to remove cholesterol. The aim of this work was to analyze both the influence of HDL on the uptake of mLDL and the expression of CD36 and Fc gamma I receptors on monocytic cell lines during cell differentiation. Methods: Uptake of fluorescein isothiocyanate (FITC)-conjugated LDL and FITC-conjugated mLDL, i.e., copper-oxidized LDL (oxLDL) or trypsin enzyme modified LDL (enzLDL), was analyzed, as well as the expression of CD36 and Fc gamma RI in THP-1 and U937 cells, using flow cytometry. Results: HDL inhibited the uptake of mLDL, which varied in degree depending on the cell line or type of mLDL. Further, HDL rapidly decreased CD36 and Fc gamma RI involved in the uptake of mLDL. Conclusions: We demonstrate that modified LDL promotes specific LDL receptor-independent uptake by monocytic cell lines, and that the uptake of LDL and enzLDL is less than that of oxLDL. In this process, HDL diminishes the uptake of LDL or mLDL, which may involve the down-regulation of receptors (CD36 and Fc gamma I). This regulatory process represents another way by which HDL can be anti-atherogenic and it depends on the type of modification of LDL and the stage of differentiation of monocytes to macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the effects of atorvastatin on ABCB1 and ABCC1 mRNA expression on peripheral blood mononuclear cells (PBMC) and their relationship with gene polymorphisms and lowering-cholesterol response. one hundred and thirty-six individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). Blood samples were collected for serum lipids and apolipoproteins measurements and DNA and RNA extraction. ABCB1 (C3435T and G2677T/A) and ABCC1 (G2012T) gene polymorphisms were identified by polymerase chain reaction-restriction (PCR)-RFLP and mRNA expression was measured in peripheral blood mononuclear cells by singleplex real-time PCR. ABCB1 polymorphisms were associated with risk for coronary artery disease (CAD) (p < 0.05). After atorvastatin treatment, both ABCB1 and ABCC1 genes showed 50% reduction of the mRNA expression (p < 0.05). Reduction of ABCB1 expression was associated with ABCB1 G2677T/A polymorphism (p = 0.039). Basal ABCB1 mRNA in the lower quartile (<0.024) was associated with lower reduction rate of serum low-density lipoprotein (LDL) cholesterol (33.4 +/- 12.4%) and apolipoprotein B (apoB) (17.0 +/- 31.3%) when compared with the higher quartile (>0.085: LDL-c = 40.3 +/- 14.3%; apoB = 32.5 +/- 10.7%; p < 0.05). ABCB1 substrates or inhibitors did not affect the baseline expression, while ABCB1 inhibitors reversed the effects of atorvastatin on both ABCB1 and ABCC1 transporters. In conclusion, ABCB1 and ABCC1 mRNA levels in PBMC are modulated by atorvastatin and ABCB1 G2677T/A polymorphism. and ABCB1 baseline expression is related to differences in serum LDL cholesterol and apoB in response to atorvastatin. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors. There are three genes that code for the PPAR isoforms: PPAR alpha, PPAR beta and PPAR gamma. In the present review, studies characterizing the various PPAR isoforms are discussed. Peroxisome proliferator-activated receptor alpha has been implicated in the lipid-lowering effects of the fibrate drugs. Peroxisome proliferator-activated receptor gamma has a clear role in adipocyte differentiation and is therapeutically targeted by the thiazolidinedione drugs for the treatment of type II diabetes. The physiological role of PPAR beta is less well understood but, as described in the present review, recent studies have implicated it with a role in colon cancer. In the present review, particular attention is focused on the role of PPAR in the regulation of expression of proteins associated with cell cycle control and tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Normal Sprague-Dau ley rat mammary gland epithelial cells and mammary gland carcinomas induced by 2-amino-1 -methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen found in the diet, were examined for the expression of peroxisome proliferator-activated receptor alpha (PPAR alpha). PPAR alpha mRNA and protein was detected in normal and tumor tissue by reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. By quantitative RT-PCR, carcinomas had a 12-fold higher expression than control mammary glands, a statistically significant difference. PPAR alpha expression was examined in carcinomas and normal tissues from rats on high fat (23.5/% corn oil) and low fat (5% corn oil) diets. Although neither carcinomas, nor control tissues showed statistically significant differences between the two diet groups, PPAR alpha expression was the highest in carcinomas from rats on the high fat diet. The expression of PPAR alpha in normal mammary gland and its significant elevation in mammary gland carcinomas raises the possibility of its involvement in mammary gland physiology and pathophysiology. (C) 2000 Published by Elsevier Science Ireland Ltd. All rights reserved.