975 resultados para POTENTIAL-ENERGY CURVES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A double folding method with simplified Skyreme-type nucleon-nucleon interaction is used to calculate the nuclear interaction potential between two nuclei. The calculation is performed in tip-to-tip orientation of the two nuclei if they are deformed. Based on this methods, the potential energy surfaces, the fusion probabilities and the evaporation residue cross sections for some cold fusion reactions leading to super-heavy elements within di-nuclear system model are evaluated. It is indicated that after the improvement, the exponential decreasing systematics of the fusion probability with increasing charge number of projectile on the Pb based target become better and the evaporation residue cross sections are in better agreement with the experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sputtered particle yields produced by Pbq+ (q=4-36) with constant kinetic energy bombardment on An surface were measured. The sputtering Could be separated to two parts: no potential sputtering is observed when q<24 (E-pot = 9.6 keV) and the sputtering yield increases with E-pot(1.2) for the higher charge states of q >= 24. The potential sputtering is mainly contributed by the relaxation of electronic excitations on target surface produced by the potential energy transfer from projectile to target atoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies, and dissociation energies of the transition metal carbonyls MCO (M = Nb, Ta, Rh, Ir, Pd, Pt) were studied by use of diverse density functional methods B3LYP, BLYP, B3P86, B3PW91, BHLYP, BP86, and PBE1PBE. It was found that the ground electronic state is (6)Sigma(+) for NbCO and TaCO, (2)Sigma(+) for RhCO,(2)Delta for IrCO, and (1)Sigma(+) for PdCO and PtCO, in agreement with previous theoretical studies. The calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy. For most of the molecules, the predicted bond distance is in agreement with experiments and previous theoretical results. BHLYP is the worst method in reproducing the experimental results compared with the other density functional methods for the title molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no strip passing by, which is defined by an on-board miniature sonar. And it can be immediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because Of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxidation-reduction (redox) potential is a fundamental physicochemical parameter that affects the growth of microorganisms in dairy products and contributes to a balanced flavour development in cheese. Even though redox potential has an important impact on the quality of dairy products, it is not usually monitored in dairy industry. The aims of this thesis were to develop practical methods for measuring redox potential in cheese, to provide detailed information on changes in redox potential during the cheesemaking and cheese ripening and how this parameter is influenced by starter systems and to understand the relationship between redox potential and cheese quality. Methods were developed for monitoring redox potential during cheesemaking and early in ripening. Changes in redox potential during laboratory scale manufacture of Cheddar, Gouda, Emmental, and Camembert cheeses were determined. Distinctive kinetics of reduction in redox potential during cheesemakings were observed, and depended on the cheese technology and starter culture utilised. Redox potential was also measured early in ripening by embedding electrodes into Cheddar cheese at moulding together with the salted curd pieces. Using this approach it was possible to monitor redox potential during the pressing stage. The redox potential of Emmental cheese was also monitored during ripening. Moreover, since bacterial growth drives the reduction in redox potential during cheese manufacture and ripening, the ability of Lactococcus lactis strains to affect redox potential was studied. Redox potential of a Cheddar cheese extract was altered by bacterial growth and there were strain-specific differences in the nature of the redox potential/time curves obtained. Besides, strategies to control redox potential during cheesemaking and ripening were developed. Oxidizing or reducing agents were added to the salted curd before pressing and results confirmed that a negative redox potential is essential for the development of sulfur compounds in Cheddar cheese. Overall, the studies described in this thesis gave an evidence of the importance of the redox potential on the quality of dairy products. Redox potential could become an additional parameter used to select microorganisms candidate as starters in fermented dairy products. Moreover, it has been demonstrated that the redox potential influences the development of flavour component. Thus, measuring continuously changes in redox potential of a product and controlling, and adjusting if necessary, the redox potential values during manufacture and ripening could be important in the future of the dairy industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exact, closed-form analytical expressions are presented for evaluating the potential energy of electrical double layer (EDL) interactions between a sphere and an infinite flat plate for three different types of interactions: constant potential, constant charge, and an intermediate case as given by the linear superposition approximation (LSA). By taking advantage of the simpler sphere-plate geometry, simplifying assumptions used in the original Derjaguin approximation (DA) for sphere-sphere interaction are avoided, yielding expressions that are more accurate and applicable over the full range of κa. These analytical expressions are significant improvements over the existing equations in the literature that are valid only for large κa because the new equations facilitate the modeling of EDL interactions between nanoscale particles and surfaces over a wide range of ionic strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the potential energy savings and economic benefits associated with compact fluorescent light bulbs, their adoption by the residential sector has been limited to date. In this paper, we present a theoretical model that focuses on the agents' ability to perceive the correct cost of lighting and on the role of environmental attitudes as key determinants of the adoption decision. We use original data from Ireland to test our theoretical predictions. Our results emphasize the importance of education, information and environmental awareness in the adoption decision.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010)] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3628676]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gradually smart grids and smart meters are closer to the home consumers. Several countries has developed studies focused in the impacts arising from the introduction of these technologies and one of the main advantages are related to energy efficiency, observed through the awareness of the population on behalf of a more efficient consumption. These benefits are felt directly by consumers through the savings on electricity bills and also by the concessionaires through the minimization of losses in transmission and distribution, system stability, smaller loading during peak hours, among others. In this article two projects that demonstrate the potential energy savings through smart meters and smart grids are presented. The first performed in Korea, focusing on the installation of smart meters and the impact of use of user interfaces. The second performed in Portugal, focusing on the control of loads in a residence with distributed generation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Para a obtenção do Grau de Mestre em Energia e Bioenergia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study is to improve the potential energy recovery to electric energy in an electrohydraulic forklift system. The initial achieved result for energy saving ratio after structural optimization is 40 %. Component optimization is applied to the tested drive which consists of a DTC controlled electric servo motor directly running a reversible hydraulic pump. According to the study the energy efficiency and the energy recovery from the electro-hydraulic forklift system can be increased by 11 % units. New ideas and directions of further research were obtained during the study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively